|
髓源性抑制细胞在宫颈癌中的研究进展
|
Abstract:
宫颈癌(cervical cancer, CC)是目前最常见的女性生殖系统恶性肿瘤,呈年轻化发展趋势。髓源性抑制细胞(myeloid-derived suppressor cells, MDSCs)是一类具有显著免疫抑制活性的异质细胞群。MDSCs已被证明在癌症的进展中发挥重要作用,宫颈癌中也观察到循环或肿瘤浸润性骨髓源性抑制细胞(MDSCs)数量的增加。本文介绍了MDSCs的分型及其功能,本文就MDSCs在宫颈癌中的研究进展进行综述,以期更全面揭示MDSCs的作用机制,为加强宫颈癌免疫治疗的研究及其探讨。
Cervical cancer (CC) is currently the most common malignant tumour of the female reproductive system, with a trend towards younger age. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells with significant immunosuppressive activity. MDSCs have been shown to play an important role in cancer progression, and an increase in the number of circulating or tumour-infiltrating myeloid-derived suppressor cells (MDSCs) has been observed in cervical cancer. This paper introduces the typing of MDSCs and their functions, and this paper reviews the research progress of MDSCs in cervical cancer, with the aim of revealing the mechanism of action of MDSCs more comprehensively, and for strengthening the research of immunotherapy for cervical cancer and its exploration.
[1] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[2] | Bronte, V., Brandau, S., Chen, S., Colombo, M.P., Frey, A.B., Greten, T.F., et al. (2016) Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications, 7, Article No. 12150. https://doi.org/10.1038/ncomms12150 |
[3] | Gabrilovich, D.I., Bronte, V., Chen, S., Colombo, M.P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007) The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Research, 67, 425. https://doi.org/10.1158/0008-5472.can-06-3037 |
[4] | 陈虹燕, 郭红. MDSCs与肿瘤微环境[J]. 免疫学杂志, 2015, 31(11): 996-1001. |
[5] | Ioannou, M., Alissafi, T., Lazaridis, I., Deraos, G., Matsoukas, J., Gravanis, A., et al. (2012) Crucial Role of Granulocytic Myeloid-Derived Suppressor Cells in the Regulation of Central Nervous System Autoimmune Disease. The Journal of Immunology, 188, 1136-1146. https://doi.org/10.4049/jimmunol.1101816 |
[6] | Choi, J., Suh, B., Ahn, Y., Kim, T.M., Lee, J., Lee, S., et al. (2011) CD15+/CD16low Human Granulocytes from Terminal Cancer Patients: Granulocytic Myeloid-Derived Suppressor Cells That Have Suppressive Function. Tumor Biology, 33, 121-129. https://doi.org/10.1007/s13277-011-0254-6 |
[7] | Khan, A.N.H., Emmons, T.R., Wong, J.T., Alqassim, E., Singel, K.L., Mark, J., et al. (2020) Quantification of Early-Stage Myeloid-Derived Suppressor Cells in Cancer Requires Excluding Basophils. Cancer Immunology Research, 8, 819-828. https://doi.org/10.1158/2326-6066.cir-19-0556 |
[8] | Sinha, P., Clements, V.K., Fulton, A.M. and Ostrand-Rosenberg, S. (2007) Prostaglandin E2 Promotes Tumor Progression by Inducing Myeloid-Derived Suppressor Cells. Cancer Research, 67, 4507-4513. https://doi.org/10.1158/0008-5472.can-06-4174 |
[9] | Gabrilovich, D.I. and Nagaraj, S. (2009) Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nature Reviews Immunology, 9, 162-174. https://doi.org/10.1038/nri2506 |
[10] | Sharma, M.D., Rodriguez, P.C., Koehn, B.H., Baban, B., Cui, Y., Guo, G., et al. (2018) Activation of P53 in Immature Myeloid Precursor Cells Controls Differentiation into Ly6c+CD103+ Monocytic Antigen-Presenting Cells in Tumors. Immunity, 48, 91-106.E6. https://doi.org/10.1016/j.immuni.2017.12.014 |
[11] | 刘秋燕, 曹雪涛. MDSCs与肿瘤免疫逃逸[J]. 中国肿瘤生物治疗杂志, 2009, 16(4): 319-324. |
[12] | Szefel, J., Danielak, A. and Kruszewski, W.J. (2019) Metabolic Pathways of L-Arginine and Therapeutic Consequences in Tumors. Advances in Medical Sciences, 64, 104-110. https://doi.org/10.1016/j.advms.2018.08.018 |
[13] | Fleming, V., Hu, X., Weber, R., Nagibin, V., Groth, C., Altevogt, P., et al. (2018) Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Frontiers in Immunology, 9, Article 398. https://doi.org/10.3389/fimmu.2018.00398 |
[14] | Talmadge, J.E. and Gabrilovich, D.I. (2013) History of Myeloid-Derived Suppressor Cells. Nature Reviews Cancer, 13, 739-752. https://doi.org/10.1038/nrc3581 |
[15] | Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014) PD-L1 Is a Novel Direct Target of HIF-1α, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. Journal of Experimental Medicine, 211, 781-790. https://doi.org/10.1084/jem.20131916 |
[16] | Roth, C., Hu, X., Weber, R., Fleming, V., Altevogt, P., Utikal, J., et al. (2018) Immunosuppression Mediated by Myeloid-Derived Suppressor Cells (MDSCs) during Tumour Progression. British Journal of Cancer, 120, 16-25. https://doi.org/10.1038/s41416-018-0333-1 |
[17] | Kumar, V., Patel, S., Tcyganov, E. and Gabrilovich, D.I. (2016) The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 37, 208-220. https://doi.org/10.1016/j.it.2016.01.004 |
[18] | 樊慧婷, 林洪生. 髓源抑制性细胞与恶性肿瘤的研究进展[J]. 现代肿瘤医学, 2020, 28(12): 2150-2154. |
[19] | Lechner, M.G., Megiel, C., Russell, S.M., Bingham, B., Arger, N., Woo, T., et al. (2011) Functional Characterization of Human CD33+ and CD11B+ Myeloid-Derived Suppressor Cell Subsets Induced from Peripheral Blood Mononuclear Cells Co-Cultured with a Diverse Set of Human Tumor Cell Lines. Journal of Translational Medicine, 9, Article No. 90. https://doi.org/10.1186/1479-5876-9-90 |
[20] | Sasano, T., Mabuchi, S., Kozasa, K., Kuroda, H., Kawano, M., Takahashi, R., et al. (2018) The Highly Metastatic Nature of Uterine Cervical/Endometrial Cancer Displaying Tumor-Related Leukocytosis: Clinical and Preclinical Investigations. Clinical Cancer Research, 24, 4018-4029. https://doi.org/10.1158/1078-0432.ccr-17-2472 |
[21] | Yokoi, E., Mabuchi, S., Komura, N., Shimura, K., Kuroda, H., Kozasa, K., et al. (2019) The Role of Myeloid-Derived Suppressor Cells in Endometrial Cancer Displaying Systemic Inflammatory Response: Clinical and Preclinical Investigations. OncoImmunology, 8, e1662708. https://doi.org/10.1080/2162402x.2019.1662708 |
[22] | Mabuchi, S. and Sasano, T. (2021) Myeloid-Derived Suppressor Cells as Therapeutic Targets in Uterine Cervical and Endometrial Cancers. Cells, 10, Article 1073. https://doi.org/10.3390/cells10051073 |
[23] | Mabuchi, S., Matsumoto, Y., Kawano, M., Minami, K., Seo, Y., Sasano, T., et al. (2014) Uterine Cervical Cancer Displaying Tumor-Related Leukocytosis: A Distinct Clinical Entity with Radioresistant Feature. JNCI Journal of the National Cancer Institute, 106, dju147. https://doi.org/10.1093/jnci/dju147 |
[24] | Vanderstraeten, A., Luyten, C., Verbist, G., Tuyaerts, S. and Amant, F. (2014) Mapping the Immunosuppressive Environment in Uterine Tumors: Implications for Immunotherapy. Cancer Immunology, Immunotherapy, 63, 545-557. https://doi.org/10.1007/s00262-014-1537-8 |
[25] | 周敏. 宫颈癌患者外周血和宫颈组织中髓源性抑制细胞的检测及意义[D]: [硕士学位论文]. 镇江: 江苏大学, 2016. |
[26] | 杜婷. 髓源性抑制细胞MDSC在宫颈癌外周血中的表达及其临床意义[D]: [硕士学位论文]. 苏州: 苏州大学, 2016. |
[27] | Kozasa, K., Mabuchi, S., Matsumoto, Y., Kuroda, H., Yokoi, E., Komura, N., et al. (2019) Estrogen Stimulates Female Cancer Progression by Inducing Myeloid-Derived Suppressive Cells: Investigations on Pregnant and Non-Pregnant Experimental Models. Oncotarget, 10, 1887-1902. https://doi.org/10.18632/oncotarget.26711 |
[28] | Gabrilovich, D.I. and Nagaraj, S. (2009) Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nature Reviews Immunology, 9, 162-174. https://doi.org/10.1038/nri2506 |
[29] | 梁云. 子宫颈癌新辅助化疗组织学疗效评价及相关免疫因素的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2017. |
[30] | Veglia, F., Sanseviero, E. and Gabrilovich, D.I. (2021) Myeloid-Derived Suppressor Cells in the Era of Increasing Myeloid Cell Diversity. Nature Reviews Immunology, 21, 485-498. https://doi.org/10.1038/s41577-020-00490-y |
[31] | 徐鑫, 马斌, 丁建霞, 等. 髓源性抑制细胞对肿瘤的免疫抑制及靶向免疫治疗研究进展[J]. 江苏大学学报(医学版), 2021, 31(3): 272-276. |
[32] | Iclozan, C., Antonia, S., Chiappori, A., Chen, D. and Gabrilovich, D. (2013) Therapeutic Regulation of Myeloid-Derived Suppressor Cells and Immune Response to Cancer Vaccine in Patients with Extensive Stage Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 62, 909-918. https://doi.org/10.1007/s00262-013-1396-8 |
[33] | 邢凯, 刘苗. 靶向髓源抑制性细胞的肿瘤免疫治疗研究进展[J]. 河北医科大学学报, 2022, 43(6): 740-745. |
[34] | 董秀丽, 马爱兰, 魏立. 放疗联合吉西他滨治疗中晚期宫颈癌患者疗效及对转移复发的影响[J]. 临床心身疾病杂志, 2022, 28(1): 63-66. |
[35] | 蒋欢欢, 鲁智敏, 朱梦婷, 等. 宫颈癌组织内骨髓来源抑制性细胞频率与患者预后的关系[J]. 标记免疫分析与临床, 2021, 28(5): 822-825. |
[36] | Mayadev, J., Nunes, A.T., Li, M., Marcovitz, M., Lanasa, M.C. and Monk, B.J. (2020) CALLA: Efficacy and Safety of Concurrent and Adjuvant Durvalumab with Chemoradiotherapy versus Chemoradiotherapy Alone in Women with Locally Advanced Cervical Cancer: A Phase III, Randomized, Double-Blind, Multicenter Study. International Journal of Gynecologic Cancer, 30, 1065-1070. https://doi.org/10.1136/ijgc-2019-001135 |
[37] | 张颖, 吴月玲. 宫颈癌的免疫治疗: 精准医学的到来[J]. 实用医学杂志, 2022, 38(15): 1856-1859. |