|
基于深度学习技术的股价预测及量化交易策略探讨
|
Abstract:
近几年来,卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和注意力机制模型等深度学习技术,在金融科技领域尤其是股价预测和量化交易策略的制定上,已经成为一个非常活跃的研究领域。论文通过分析上证50指数及其成分股的数据,验证了BiGRU-CNN-Attention模型在预测准确性上的优势;考虑到不同投资者的风险承受能力和收益预期,论文设计了保守型、稳健型和极端激进型三种不同风险偏好的投资策略,揭示了在风险和回报之间平衡的效果。结果表明,结合深度学习模型预测和适当的投资策略,不仅可以有效提升投资组合的性能,还可以为投资者提供了定制化的投资方案,进一步凸显深度学习技术在金融市场决策中的应用潜力。
In recent years, deep learning technologies such as Convolutional Neural Networks (CNN), Long Short Term Memory Networks (LSTM), Gated Recurrent Units (GRU), and Attention Mechanism Models have become an active research field in the field of financial technology, especially in stock price prediction and quantitative trading strategy formulation. The paper verifies the advantage of the BiGRU-CNN Attention model in prediction accuracy by analyzing the data of the Shanghai Stock Exchange 50 Index and its constituent stocks; considering the risk tolerance and return expectations of different investors, the paper designs three investment strategies with different risk preferences: conservative, robust, and extremely aggressive, revealing the effect of balancing risk and return. The results indicate that combining deep learning models with appropriate investment strategies can not only effectively improve the performance of investment portfolios, but also provide customized investment plans for investors, further highlighting the potential application of deep learning technology in financial market decision-making.
[1] | 张智颖, 任志明, 陈为民, 廖兵. 分散化投资策略在新型研发机构风险投资中的应用——基于Markowitz投资组合理论视角[J]. 科技管理研究, 2022, 42(22): 145-152. |
[2] | 蒙懿, 徐庆娟. 基于CN[N-BiLSTM和注意力机制的股票预测[J]. 南宁师范大学学报(自然科学版), 2021(4): 70-77. |
[3] | 陈虹宇. 深度学习在金融时间序列预测中的应用研究[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2023. |
[4] | 谢琳. 基于LSTM-XGBoost组合模型的股价预测研究[D]: [硕士学位论文]. 北京: 中央民族大学, 2022. |
[5] | Jin, Z., Yang, Y. and Liu, Y. (2020) Stock Closing Price Prediction Based on Sentiment Analysis and Lstm. Neural Computing and Applications, 32, 9713-9729. https://doi.org/10.1007/s00521-019-04504-2 |
[6] | 郝啟钧. 基于联合损失函数CNN-GRU模型的股票价格预测研究[D]: [硕士学位论文]. 济南: 山东财经大学, 2023. |
[7] | 王嘉增, 张新生. 基于MDT-BiLSTM模型的个股价格预测研究[J]. 经营与管理, 2024(1): 13-22. |
[8] | 范辉, 朱勇丞, 李晋江. 基于注意力机制和特征融合的股票预测方法[J]. 山东工商学院学报, 2024, 38(1): 57-68+76. |
[9] | 郜笑颖, 黄莹, 郭思敏, 原彰. 基于马科维茨模型的中医药股票组合分析——以片仔癀、华润三九及云南白药为例[J]. 现代商业, 2020(35): 82-84. |