|
网络拓扑对混沌系统同步能力的影响
|
Abstract:
本文探讨了不同网络中耦合的R?ssler振子的同步能力问题。首先,我们使用数值方法对单个R?ssler系统进行求解,观察到混沌现象的发生。接着,基于主稳定函数法,通过求解最大Lyapunov指数,得到系统理论上发生同步的临界耦合强度。同时,利用同步误差函数,得到了数值上的临界耦合强度。通过对比这两种方法得到的结果,评估混沌系统的同步能力,并推测了网络拓扑的平均度与网络同步能力之间存在密切关系。
This paper explores the synchronization capability of coupled R?ssler oscillators in different networks. Firstly, we employ numerical methods to solve for a single R?ssler system, observing the occurrence of chaotic phenomena. Next, based on the method of Master Stability Function, we determine the critical coupling strength for synchronization theoretically by solving for the maximum Lyapunov exponent. Simultaneously, utilizing the synchronization error function, we obtain the critical coupling strength numerically. By comparing the results obtained from these two methods, we assess the synchronization capability of chaotic systems and speculate on the close relationship between the average degree of network topology and network synchronization capability.
[1] | Pecora, L.M. and Carroll, T.L. (1991) Driving Systems with Chaotic Signals. Physical Review A, 44, 2374-2383. https://doi.org/10.1103/physreva.44.2374 |
[2] | Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824. https://doi.org/10.1103/physrevlett.64.821 |
[3] | Barahona, M. and Pecora, L.M. (2002) Synchronization in Small-World Systems. Physical Review Letters, 89, Article 054101. https://doi.org/10.1103/physrevlett.89.054101 |
[4] | Masuda, N. and Aihara, K. (2004) Global and Local Synchrony of Coupled Neurons in Small-World Networks. Biological Cybernetics, 90, 302-309. https://doi.org/10.1007/s00422-004-0471-9 |
[5] | Li, X. and Chen, G. (2003) Synchronization and Desynchronization of Complex Dynamical Networks: An Engineering Viewpoint. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 1381-1390. https://doi.org/10.1109/tcsi.2003.818611 |
[6] | Belykh, I., de Lange, E. and Hasler, M. (2005) Synchronization of Bursting Neurons: What Matters in the Network Topology. Physical Review Letters, 94, Article 188101. https://doi.org/10.1103/physrevlett.94.188101 |
[7] | Ditto, W. (2002) Keeping in Sync. Nature, 415, 736-737. https://doi.org/10.1038/415736b |
[8] | Wiesenfeld, K., Colet, P. and Strogatz, S. (1998) Frequency Locking in Josephson Arrays: Connection with the Kuramoto Model. Physical Review E, 57, 1563-1569. https://doi.org/10.1103/physreve.57.1563 |
[9] | Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., et al. (2005) Chaos-Based Communications at High Bit Rates Using Commercial Fibre-Optic Links. Nature, 438, 343-346. https://doi.org/10.1038/nature04275 |
[10] | Ermentrout, B. (1991) An Adaptive Model for Synchrony in the Firefly Pteroptyx malaccae. Journal of Mathematical Biology, 29, 571-585. https://doi.org/10.1007/bf00164052 |
[11] | Vinogradova, T.M., Lyashkov, A.E., Zhu, W., Ruknudin, A.M., Sirenko, S., Yang, D., et al. (2006) High Basal Protein Kinase A—Dependent Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous Beating of Cardiac Pacemaker Cells. Circulation Research, 98, 505-514. https://doi.org/10.1161/01.res.0000204575.94040.d1 |
[12] | Stam, C.J. (2005) Nonlinear Dynamical Analysis of EEG and MEG: Review of an Emerging Field. Clinical Neurophysiology, 116, 2266-2301. https://doi.org/10.1016/j.clinph.2005.06.011 |
[13] | MacLeod, K. and Laurent, G. (1996) Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies. Science, 274, 976-979. https://doi.org/10.1126/science.274.5289.976 |
[14] | Prakash, M. and Gershenfeld, N. (2007) Microfluidic Bubble Logic. Science, 315, 832-835. https://doi.org/10.1126/science.1136907 |
[15] | Pecora, L.M. and Carroll, T.L. (1998) Master Stability Functions for Synchronized Coupled Systems. Physical Review Letters, 80, 2109-2112. https://doi.org/10.1103/physrevlett.80.2109 |
[16] | Timme, M., Wolf, F. and Geisel, T. (2004) Topological Speed Limits to Network Synchronization. Physical Review Letters, 92, Article 074101. https://doi.org/10.1103/physrevlett.92.074101 |
[17] | Yan, G., Chen, G., Lü, J. and Fu, Z. (2009) Synchronization Performance of Complex Oscillator Networks. Physical Review E, 80, Article 056116. https://doi.org/10.1103/physreve.80.056116 |
[18] | 舒永录, 张付臣, 杨洪亮. 一个新的多维超混沌系统及其性质研究[J]. 四川大学学报(自然科学版), 2011, 48(4): 857-864. |
[19] | 行鸿彦, 冒海微, 徐伟. 基于全局指数吸引集的统一变形混沌系统同步[J]. 信息与控制, 2014, 43(4): 385-391. |
[20] | 刘莹, 王贺元, 陈荟颖. 强迫布鲁塞尔振子动力学行为和全局指数同步的数值仿真[J]. 动力学与控制学报, 2017, 15(5): 423-429. |
[21] | 舒睿, 陈伟, 肖井华. 多个耦合星型网络的同步优化[J]. 物理学报, 2019, 68(18): 65-74. |
[22] | 陈松, 张付臣, 肖敏. 一个复杂混沌系统的分析与同步控制[J]. 系统科学与数学, 2024, 44(5): 1311-1323. |