全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解非线性偏微分方程的高斯过程方法
Gaussian Process Methods for Solving Nonlinear Partial Differential Equations

DOI: 10.12677/aam.2024.136264, PP. 2753-2760

Keywords: 非线性偏微分方程,高斯过程,不确定性量化,数值解法
Nonlinear Partial Differential Equations
, Gaussian Processes, Uncertainty Quantification, Numerical Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

非线性偏微分方程(NPDEs)的求解在流体力学、金融数学等领域中具有广泛的应用。鉴于NPDEs通常难以求得解析解,本文详细探讨了基于高斯过程的偏微分方程求解方法:GPPDE方法和TD-GPsolver方法。考虑到NPDEs的非线性系统复杂性,我们将GPPDE方法和TD-GPsolver方法扩展至两种代表性的非线性偏微分方程——Allen-Cahn方程和Cahn-Hilliard方程,并与物理信息神经网络方法(PINN)进行对比,评估这些方法在不同离散化条件下的表现。结果表明,TD-GPsolver方法在处理大规模离散化数据集时不仅展现了较高的计算效率和稳定性,而且能够维持较低的误差率,GPPDE方法在处理小规模数据集时能提供较高精度,确保了计算效率和精度的平衡。PINN方法在高离散点设置下能显著提升数值精度,但其较长的计算时间限制了其实用性。
The solving of nonlinear partial differential equations (NPDEs) finds wide applications in fields such as fluid mechanics and financial mathematics. Given the difficulty in obtaining analytical solutions for NPDEs, this study extensively explores Gaussian process-based methods for solving partial differential equations: GPPDE method and TD-GPsolver method. Considering the complexity of nonlinear systems in NPDEs, we extend the GPPDE method and TD-GPsolver method to two representative nonlinear partial differential equations—Allen-Cahn equation and Cahn-Hilliard equation, and compare them with the Physics-Informed Neural Network (PINN) method to evaluate their performance under different discretization conditions. The results indicate that the TD-GPsolver method demonstrates high computational efficiency and stability when dealing with large-scale discretized datasets while maintaining a low error rate. The GPPDE method offers higher accuracy when handling small-scale datasets, ensuring a balance between computational efficiency and accuracy. Although the PINN method significantly improves numerical accuracy under high discretization settings, its longer computational time limits its practicality.

References

[1]  石钟慈. 第三种科学方法: 计算机时代的科学计算[M]. 北京: 清华大学出版社有限公司, 2000.
[2]  陆金甫, 关治. 偏微分方程数值解法[M]. 北京: 清华大学出版社有限公司, 2004.
[3]  Logan, J.D. (2014) Applied Partial Differential Equations. Springer, Berlin.
[4]  Science发布: 全世界最前沿的125个科学问题[EB/OL].
https://www.nsfc.gov.cn/csc/20340/20289/22023/index.html, 2024-03-04.
[5]  Shen, J., Tang, T. and Wang, L.L. (2011) Spectral Methods: Algorithms, Analysis and Applications. Springer Science & Business Media, Berlin, 2-5.
[6]  Rasmussen and Williams (2006) Gaussian Processes for Machine Learning.
[7]  Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M. (2018) Automatic Differentiation in Machine Learning: A Survey. Journal of Machine Learning Research, 18, Article No. 153.
[8]  Skilling, J. (1992) Bayesian Solution of Ordinary Differential Equations. In: Ray Smith, C., Erickson, G.J. and Neudorferk, P.O., Eds., Maximum Entropy and Bayesian Methods: Seattle, Springer, Berlin, 23-37.
[9]  S?rkk?, S. (2011) Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression. 21st International Conference on Artificial Neural Networks, Espoo, 14-17 June 2011, 151-158.
[10]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2018) Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations. SIAM Journal on Scientific Computing, 40, A172-A198.
https://doi.org/10.1137/17m1120762
[11]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2017) Machine Learning of Linear Differential Equations Using Gaussian Processes. Journal of Computational Physics, 348, 683-693.
https://doi.org/10.1016/j.jcp.2017.07.050
[12]  Rai, P.K. and Tripathi, S. (2019) Gaussian Process for Estimating Parameters of Partial Differential Equations and Its Application to the Richards Equation. Stochastic Environmental Research and Risk Assessment, 33, 1629-1649.
https://doi.org/10.1007/s00477-019-01709-8
[13]  Chen, Y., Hosseini, B., Owhadi, H. and Stuart, A.M. (2021) Solving and Learning Nonlinear PDEs with Gaussian Processes. Journal of Computational Physics, 447, Article ID: 110668.
https://doi.org/10.1016/j.jcp.2021.110668
[14]  Dondelinger, F., Husmeier, D., Rogers, S. and Filippone, M. (2013) ODE Parameter Inference Using Adaptive Gradient Matching with Gaussian Processes. Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS), Scottsdale, Volume 31, 216-228.
[15]  Solak, E., Murray-Smith, R., Leithead, W.E., Leith, D. and Rasmussen, C. (2002) Derivative Observations in Gaussian Process Models of Dynamic Systems. Advances in Neural Information Processing Systems 15, NIPS 2002, Vancouver, 9-14 December 2002, 1057-1064.
[16]  Owhadi, H. (2017) Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games. SIAM Review, 59, 99-149.
https://doi.org/10.1137/15m1013894
[17]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2017) Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations.
[18]  Allen, S.M. and Cahn, J.W. (1979) A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening. Acta Metallurgica, 27, 1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[19]  Cahn, J.W. and Hilliard, J.E. (1958) Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 28, 258-267.
https://doi.org/10.1063/1.1744102

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133