全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离散不适定问题的扩展迭代正则化方法
The Enriched Iterative Regularization Method for Discrete Ill-Posed Problems

DOI: 10.12677/aam.2024.136263, PP. 2742-2752

Keywords: Tikhonov正则化,Arnoldi过程,扩展子空间,Krylov子空间
Tikhonov Regularization
, Arnoldi Process, Enriched Subspace, Krylov Subspace

Full-Text   Cite this paper   Add to My Lib

Abstract:

Arnoldi-Tikhonov方法是求解大规模离散不适定问题的一种常用子空间迭代正则化方法,其由Arnoldi算法构建低维Krylov子空间,再对低维问题用Tikhonov正则化从而获得正则化解。但由于低维子空间信息缺失,正则化解的有时效果欠佳。为了改进正则化效果,本文通过增加一个含有特定先验信息的低维子空间来扩展Krylov子空间,提出了求解大规模离散不适定问题的一种扩展子空间迭代正则化方法。该方法通过扩展Arnoldi算法构建扩展子空间,并融合Tikhonov正则化,从而获得更优正则化解。针对经典算例,将所提算法与Arnoldi-Tikhonov算法进行了数值实验和性态比较,数值结果验证了所提算法的有效性。
Arnoldi-Tikhonov method is one of the often used Krylov subspace iterative regularization methods for solving large scale discrete ill-posed problems. It generates the Krylov subspace through Arnoldi process and gets the regularized solution through applying Tikhonov regularization method to the projected small problem. However, due to the information deficiency of the dimension reduced subspace, the regularized solution by Arnoldi-Tikhonv method sometimes is not as good as expected. In order to improve the regularized solution, an enriched subspace iterative regularization method is proposed in this paper. The proposed new method enriches the Krylov subspace by adding a special subspace that holds some specific prior information. Numerical experiments are carried out. The numerical results show that the proposed method is more effective than the Arnoldi-Tikhonov method.

References

[1]  Kirsch, A. (2021) An Introduction to the Mathematical Theory of Inverse Problems. 3th Edition, Springer.
[2]  Hansen, P.C. (1994) Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems. Numerical Algorithms, 6, 1-35.
https://doi.org/10.1007/bf02149761
[3]  Phillips, D.L. (1962) A Technique for the Numerical Solution of Certain Integral Equations of the First Kind. Journal of the Association for Computing Machinery, 9, 84-97.
https://doi.org/10.1145/321105.321114
[4]  Tikhonov, A.N. (1963) Solution of Incorrectly Formulated Problems and the Regularization Method. Soviet Mathematics Doklady, 4, 1035-1038.
[5]  Groetsch, C.W. (1984) The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman.
[6]  Engl, H.W., Hanke, M. and Neubauer, A. (1996) Regularization of Inverse Problems. Kluwer.
[7]  Calvetti, D., Lewis, B. and Reichel, L. (2001) Krylov Subspace Iterative Methods for Nonsymmetric Discrete Ill-Posed Problems in Image Restoration. Proceedings of the 2001 International Symposium on Optical Science and Technology, San Diego, 29 July-3 August 2001, 224-233.
https://doi.org/10.1117/12.448653
[8]  Morikuni, K., Reichel, L. and Hayami, K. (2014) FGMRES for Linear Discrete Ill-Posed Problems. Applied Numerical Mathematics, 75, 175-187.
https://doi.org/10.1016/j.apnum.2013.08.004
[9]  Saad, Y. and Schultz, M.H. (1986) GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7, 856-869.
https://doi.org/10.1137/0907058
[10]  Neuman, A., Reichel, L. and Sadok, H. (2012) Implementations of Range Restricted Iterative Methods for Linear Discrete Ill-Posed Problems. Linear Algebra and Its Applications, 436, 3974-3990.
https://doi.org/10.1016/j.laa.2010.08.033
[11]  Lewis, B. and Reichel, L. (2009) Arnoldi-Tikhonov Regularization Methods. Journal of Computational and Applied Mathematics, 226, 92-102.
https://doi.org/10.1016/j.cam.2008.05.003
[12]  Reichel, L. and Ye, Q. (2005) Breakdown-Free GMRES for Singular Systems. SIAM Journal on Matrix Analysis and Applications, 26, 1001-1021.
https://doi.org/10.1137/s0895479803437803
[13]  Hansen, P.C. (2010) Discrete Inverse Problems: Insight and Algorithms. Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9780898718836
[14]  Morozov, V.A. (1984) Methods for Solving Incorrectly Posed Problems. Springer.
https://doi.org/10.1007/978-1-4612-5280-1
[15]  Miller, K. (1970) Least Squares Methods for Ill-Posed Problems with a Prescribed Bound. SIAM Journal on Mathematical Analysis, 1, 52-74.
https://doi.org/10.1137/0501006
[16]  Calvetti, D., Lewis, B. and Reichel, L. (2002) GMRES, L-Curves, and Discrete Ill-Posed Problems. Bit Numerical Mathematics, 42, 44-65.
https://doi.org/10.1023/a:1021918118380
[17]  Hansen, P.C. (1992) Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAM Review, 34, 561-580.
https://doi.org/10.1137/1034115
[18]  Calvetti, D., Lewis, B. and Reichel, L. (2000) GMRES-Type Methods for Inconsistent Systems. Linear Algebra and Its Applications, 316, 157-169.
https://doi.org/10.1016/s0024-3795(00)00064-1
[19]  Calvetti, D., Morigi, S., Reichel, L. and Sgallari, F. (2000) Tikhonov Regularization and the L-Curve for Large Discrete Ill-Posed Problems. Journal of Computational and Applied Mathematics, 123, 423-446.
https://doi.org/10.1016/s0377-0427(00)00414-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133