全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于度量优化的深度网络SAR自聚焦方法
A Deep Network SAR Autofocusing Method Based on Metric Optimization

DOI: 10.12677/orf.2024.143302, PP. 653-664

Keywords: 深度网络,特征提取,自聚焦,度量优化
Deep Network
, Feature Extraction, Autofocusing, Metric Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

相位误差是引起合成孔径雷达图像散焦的主要原因,受到目标场景与算法参数的影响,基于度量优化的传统自聚焦方法迭代次数多,计算量大。鉴于卷积神经网络在图像特征提取与特征分类方面的优越性,本文提出了一种基于度量优化的深度网络SAR自聚焦方法。首先,利用卷积神经网络的特征提取能力,将不同程度的离焦图像通过特征分类来实现离焦图像到相位误差系数的映射。其次,网络估计的相位误差系数被建模成相应的相位误差多项式,构成相应的误差向量来补偿离焦图像。通过使用度量函数作为损失函数进行网络训练,实现SAR离焦图像的误差更新和补偿。相比于传统自聚焦方法,基于深度网络的方法,训练完成后,不需要进行反复迭代,且不依赖于场景强散射点,具有更快的聚焦速度和稳定的聚焦性能。
Phase error is the main cause of SAR image defocusing, which is affected by the target scene and algorithm parameters. The traditional autofocusing method based on metric optimization has many iterations and a large amount of computation. In view of the advantages of convolutional neural networks in image feature extraction and feature classification, in this paper, a autofocusing method for SAR in deep networks based on metric optimization is proposed. Firstly, the feature extraction capability of convolutional neural network is used to classify the defocusing images to realize the mapping from the defocusing image to the phase error coefficient. Secondly, the phase error coefficient estimated by the network is modeled into the corresponding phase error polynomial, and the corresponding error vector is formed to compensate the defocusing image. By using measurement function as loss function for network training, the error updating and compensation of SAR defocusing image are realized. Compared with traditional autofocusing methods, the method based on deep network does not need to carry out repeated iterations after training, and does not rely on strong scattering points in the scene, so it has faster focusing speed and stable focusing performance.

References

[1]  Lan G. Cumming, Frank H. Wong. 合成孔径雷达成像算法与实现[M]. 洪文, 胡东辉, 译. 北京: 电子工业出版社, 2007.
[2]  杨薇. 机载SAR回波仿真与图像模拟[D]: [硕士学位论文]. 成都: 电子科技大学, 2014.
[3]  Reigber, A., Scheiber, R., Jager, M., et al. (2012) Very-High-Resolution Airborne Synthetic Aperture Radar Imaging: Signal Processing and Applications. Proceedings of the IEEE, 101, 759-783.
https://doi.org/10.1109/JPROC.2012.2220511
[4]  武昕伟, 朱兆达. 一种基于最小熵准则的SAR图像自聚焦算法[J]. 系统工程与电子技术, 2003, 25(7): 867-869.
[5]  李志远, 郭嘉逸, 张月婷, 黄丽佳, 李洁, 吴一戎. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11(1): 83-94.
[6]  张昆辉. 基于对比度最优化的SAR图像相位调整算法[J]. 西北工业大学学报, 2008(4): 481-487.
[7]  张云, 穆慧琳, 姜义成, 丁畅. 基于深度学习的雷达成像技术研究进展[J]. 雷达科学与技术, 2021, 19(5): 467-478.
[8]  张群, 张宏伟, 倪嘉成, 罗迎. 合成孔径雷达深度学习成像研究综述[J]. 信号处理, 2023, 39(9): 1521-1551.
[9]  Mason, E., Yonel, B. and Yazici, B. (2017) Deep Learning for Radar. 2017 IEEE Radar Conference (RadarConf), Seattle, 8-12 May 2017, 1703-1708.
https://doi.org/10.1109/RADAR.2017.7944481
[10]  黄少寅. 基于深度学习的高分辨雷达成像技术研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2020.
[11]  Mu, H., Zhang, Y., Jiang, Y., et al. (2021) CV-GMTINet: GMTI Using a Deep Complex-Valued Convolutional Neural Network for Multichannel SAR-GMTI System. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15.
https://doi.org/10.1109/TGRS.2020.3047112
[12]  Yang, X., Zhou, Y., Wang, C., et al. (2019) SAR Images Enhancement via Deep Multi-Scale Encoder-Decoder Neural Network. IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, 28 July 2019-2 August 2019, 3368-3371.
https://doi.org/10.1109/IGARSS.2019.8898690
[13]  Tang, W., Qian, J., Wang, L., et al. (2022) SAR Image Autofocusing Based on Res-Unet. IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, 17-22 July 2022, 2971-2974.
https://doi.org/10.1109/IGARSS46834.2022.9884455

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133