全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

富电子AlnSi12?nN12 (n= 1,2和4)团簇的非线性光学特性研究
Theoretical Study on the Nonlinear Optical Properties of Electron Redundant AlnSi12?nN12 (n = 1, 2 and 4) Clusters

DOI: 10.12677/ms.2024.146096, PP. 861-866

Keywords: AlnSi12?nN12团簇,超极化率,非线性光学
AlnSi12?nN12 Clusters
, Hyper-Polarizability, Nonlinear Optical Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用密度泛函理论的B3LYP和CAM-B3LYP方法,详细计算和研究了AlnSi12?nN12 (n = 1,2和4)团簇的线性和非线性光学特征。由第一超极化率的计算结果表明,非对称的体系在外场中容易极化,具有较高的超极化率,因此以SiN为基础的Al掺杂笼状结构在非线性光学材料方面有潜在应用。
The linear and nonlinear optical properties of AlnSi12?nN12 (n = 1, 2 and 4) clusters are explored by using B3LYP and CAM-B3LYP. The results show that AlnSi12?nN12 cages large hyper-polarizabilities and so potential applications as nonlinear optical materials. As the lone pair electrons are loosely bond, and are easily polarized in electric field.

References

[1]  Kroto, H.W., Heath, J.R., O’Brien, S.C., et al. (1985) C60: Buckminsterfullerene. Nature, 318, 162-163.
https://doi.org/10.1038/318162a0
[2]  Szwacki, N.G., Sadrzadeh, A. and Yakobson, B.I. (2007) B80 Fullerene: An Ab Initio Prediction of Geometry, Stability, and Electronic Structure. Physical Review Letters, 98, Article 166804.
https://doi.org/10.1103/PhysRevLett.98.166804
[3]  Zhai, H.J., Zhao, Y.F., Li, W.L., et al. (2014) Observation of All-Boron Fullerene. Nature Chemistry, 6, 727-731.
https://doi.org/10.1038/nchem.1999
[4]  Oku, T., Nishiwaki, A., Narita, I., et al. (2003) Formation and Structure of B24N24 Clusters. Chemical Physics Letters, 380, 620-623.
https://doi.org/10.1016/j.cplett.2003.08.096
[5]  Oku, T., Narita, I. and Nishiwaki, A. (2004) Formation and Structures of B36N36 and Y@B36N36 Clusters Studied by High-Resolution Electron Microscopy and Mass Spectrometry. Journal of Physics and Chemistry of Solids, 65, 369-372.
https://doi.org/10.1016/j.jpcs.2003.09.010
[6]  Oku, T., Nishiwaki, A. and Narita, I. (2004) Formation and Atomic Structures of BnNn (n=24-60) Cluster by Mass Spectrometry, High-Resolution Electron Microscopy and Molecular Orbital Calculations. Physica B: Condensed Matter, 351, 184-190.
https://doi.org/10.1016/j.physb.2004.06.007
[7]  Chen, H., Zhang, H., Fu, L., et al. (2008) Nano Au-Decorated Boron Nitride Nanotubes: Conductance Modification and Field-Emission Enhancement. Applied Physics Letters, 92, Article 243105.
https://doi.org/10.1063/1.2943653
[8]  Wu, Q., Hu, Z., Wang, X.Z., et al. (2003) Synthesis and Characterization of Faceted Hexagonal Aluminum Nitride Nanotuubes. Journal of the American Chemical Society, 125, 10176-10177.
https://doi.org/10.1021/ja0359963
[9]  Costales, A., Blanco, M.A., Francisco, E., et al. (2006) First Principles Study of Neutral and Anionic (Medium-Size) Aluminum Nitride Clusters AlnNn, n=7-16. The Journal of Physical Chemistry B, 110, 4092-4098.
https://doi.org/10.1021/jp056569+
[10]  Lei, W.W., Liu, D., Zhang, J., et al. (2009) Direct Synthesis, Growth Mechanism, and Optical Properties of 3D AlN Nanostructures with Urchin Shapes. Crystal Growth & Design, 9, 1489-1493.
https://doi.org/10.1021/cg800965p
[11]  Beheshtian, J., Bagheri, Z., Kamfiroozi, M., et al. (2012) A Comparative Study on the B12N12, Al12N12, B12P12 and Al12P12 Fullerene-Like Cages. Journal of Molecular Modeling, 18, 2653-2658.
https://doi.org/10.1007/s00894-011-1286-y
[12]  Chang, C., Patzer, A.B.C., Sedlmayr, E., et al. (2001) A Density Functional Study of Small (AlN)x Clusters: Structures, Energies, and Frequencies. Chemical Physics, 271, 283-292.
https://doi.org/10.1016/S0301-0104(01)00439-6
[13]  Matxain, J.M., Eriksson, L.A., Mercero, J.M., et al. (2007) New Solids Based on B12N12 Fullerenes. The Journal of Physical Chemistry C, 111, 13354-13360.
https://doi.org/10.1021/jp073773j
[14]  Li, J.L., He, T. and Yang, G.W. (2012) An All-Purpose Building Block: B12N12 Fullerene. Nanoscale, 4, 1665-1670.
https://doi.org/10.1039/c2nr11808d
[15]  Liu, Z.F., Wang, X.Q., Liu, G.B., et al. (2013) Low-Density Nanoporous Phases of Group-III Nitrides Built from Sodalite Cage Clusters. Physical Chemistry Chemical Physics, 15, 8186-8198.
https://doi.org/10.1039/c3cp50814e
[16]  Yu, J., Bai, X.D., Ahn, J., et al. (2000) Highly Oriented Rich Boron B-C-N Nanotubes by Bias-Assisted Hot Filament Chemical Vapor Deposition. Chemical Physics Letters, 323, 529-533.
https://doi.org/10.1016/S0009-2614(00)00546-7
[17]  Luo, X., Guo, X., Liu, Z., et al. (2007) First-Principles Study of Wurtzite BC2N. Physical Review B, 76, Article 092107.
https://doi.org/10.1103/PhysRevB.76.092107
[18]  Fan, X.F., Zhu, Z., Shen, Z.X. and Kuo, J.L. (2008) On the Use of Bond-Counting Rules in Predicting Thestability of C12B6N6 Fullerene. The Journal of Physical Chemistry C, 112, 15691-15696.
https://doi.org/10.1021/jp803921k
[19]  Kar, T., Cuma, M. and Scheiner, S. (1998) Structure, Stability, and Bonding of BC2N: An ab Initio Study. The Journal of Physical Chemistry A, 102, 10134-10141.
https://doi.org/10.1021/jp982424+
[20]  Taniyasu, Y. and Kasu, M. (2008) Aluminum Nitride Deep-Ultraviolet Light-Emitting p-n Junction Diodes. Diamond and Related Materials, 17, 1273-1277.
https://doi.org/10.1016/j.diamond.2008.02.042
[21]  Niu, M., Yu, G.T., Yang, G.H., et al. (2014) Doping the Alkali Atom: An Effective Strategy to Improve the Electronic and Nonlinear Optical Properties of the Inorganic Al12N12 Nanocage. Inorganic Chemistry, 53, 349-358.
https://doi.org/10.1021/ic4022917
[22]  Shakerzadeh, E., Barazesh, N. and Talebi, S.Z. (2014) A Comparative Theoretical Study on the Structural, Electronic and Nonlinear Optical Features of B12N12 and Al12N12 Nanoclusters with the Groups III, IV and V Dopants. Superlattices and Microstructures, 76, 264-276.
https://doi.org/10.1016/j.spmi.2014.09.037
[23]  Yang, H. and Chen, H. (2016) The Stabilities and Electronic Structures of AlnSi12?nN12 (n=0, 1, 2 and 4). Journal of Materials Research, 31, 241-249.
https://doi.org/10.1557/jmr.2015.390
[24]  Yang, H., Song, Y., Zhang, Y. and Chen, H. (2018) Prediction of the Electron Redundant SinNn Fullerenes. Physica E: Low-Dimensional Systems and Nanostructures, 99, 208-214.
https://doi.org/10.1016/j.physe.2018.02.010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133