|
Material Sciences 2024
高载量磷掺杂MoS2的制备及储锌性能的研究
|
Abstract:
使用简单的水热法制备了高载量(约为10 mg?cm?2)的磷掺杂MoS2,通过形貌表征、电化学测试等方法证明了磷的掺杂可以扩大MoS2的层间距,提高导电性以及比容量。同时,开发了准固态电解质(PVA/ZnCl2)来代替含水电解质(Zn(CF3SO3)2),有效地解决了MoS2在水性电解质中容易溶解和结构坍塌等问题。所制备的Zn//MoS2-P电池的循环寿命也有显著提高,比容量也有了明显提升,从131 mAh?g?1 (在含水电解质中)提高到了184 mAh?g?1 (在准固态电解质中)以及优异的倍率性能(在1 A?g?1下容量为65 mAh?g?1)。
Phosphorus-doped MoS2 with high load capacity (about 10 mg?cm?2) was prepared by a simple hydrothermal method. By means of morphology structure and electrochemical properties, the doping of phosphorus can expand the layer spacing of MoS2, improve the conductivity and specific capacity. At the same time, the quasi-solid gel electrolyte (PVA/ZnCl2) was developed to replace the aqueous electrolyte (Zn(CF3SO3)2), which effectively solved the problems of the dissolution and structure collapse of MoS2 in the aqueous electrolyte. The cycle life of the Zn//MoS2-P cells was also significantly improved, increasing the specific capacity from 131 mAh?g?1 (in aqueous electrolyte) to 184 mAh?g?1 (in gel electrolyte) and excellent multiplier performance (65 mAh?g?1 at 1 A?g?1).
[1] | Guo, X., Zhou, J., Bai, C., Li, X., Fang, G. and Liang, S. (2020) Zn/MnO2 Battery Chemistry with Dissolution-Deposition Mechanism. Materials Today Energy, 16, Article ID: 100396. https://doi.org/10.1016/j.mtener.2020.100396 |
[2] | Wang, S., Liu, B., Zhi, G., Gong, X., Gao, Z. and Zhang, J. (2018) Relaxing Volume Stress and Promoting Active Sites in Vertically Grown 2D Layered Mesoporous MoS2(1?X)Se2x/rGO Composites with Enhanced Capability and Stability for Lithium Ion Batteries. Electrochimica Acta, 268, 424-434. https://doi.org/10.1016/j.electacta.2018.02.102 |
[3] | Usui, H., Domi, Y., Yoshioka, S., Kojima, K. and Sakaguchi, H. (2016) Electrochemical Lithiation and Sodiation of Nb-Doped Rutile TiO2. ACS Sustainable Chemistry & Engineering, 4, 6695-6702. https://doi.org/10.1021/acssuschemeng.6b01595 |
[4] | Ming, J., Guo, J., Xia, C., Wang, W. and Alshareef, H.N. (2019) Zinc-Ion Batteries: Materials, Mechanisms, and Applications. Materials Science and Engineering: R: Reports, 135, 58-84. https://doi.org/10.1016/j.mser.2018.10.002 |
[5] | Fu, C., Li, G., Lin, K. and Zhang, H. (2019) Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine. Sustainability, 11, Article No. 512. https://doi.org/10.3390/su11020512 |
[6] | Lionetto, F., Arianpouya, N., Bozzini, B., Maffezzoli, A., Nematollahi, M. and Mele, C. (2024) Advances in Zinc-Ion Structural Batteries. Journal of Energy Storage, 84, Article ID: 110849. https://doi.org/10.1016/j.est.2024.110849 |
[7] | Liu, X., Wang, H., Zhong, J., Ma, Z., Liu, W., Zhang, R., et al. (2024) Cathode Material Design of Static Aqueous ZnI2 Batteries. Journal of Energy Storage, 84, Article ID: 110765. https://doi.org/10.1016/j.est.2024.110765 |
[8] | Liu, W., Chen, M., Ren, D., Tang, J., Sun, J., Zhang, X., et al. (2024) Ph Buffer KH2PO4 Boosts Zinc Ion Battery Performance via Facilitating Proton Reaction of MnO2 Cathode. Journal of Colloid and Interface Science, 657, 931-941. https://doi.org/10.1016/j.jcis.2023.12.030 |
[9] | Zhao, Y., Xia, X., Li, Q., Wang, Y., Fan, Y., Zhao, Y., et al. (2024) Activating the Redox Chemistry of MnO2/Mn2+ in Aqueous Zn Batteries Based on Multi-Ions Doping Regulation. Energy Storage Materials, 67, Article ID: 103268. https://doi.org/10.1016/j.ensm.2024.103268 |
[10] | Liu, Z., Xu, H., Han, M., Li, S., Zhi, J. and Chen, P. (2024) Morphological Regulation of Mn2+ Deposition Products Enables Long Lifespan of Aqueous Zinc Batteries. Electrochimica Acta, 479, Article ID: 143878. https://doi.org/10.1016/j.electacta.2024.143878 |
[11] | Deng, C., Nie, Y., Yuan, X., Zou, T., Wang, J., Gao, H., et al. (2024) In-Situ Self-Grown Amorphous Zn-Mn-O Layers Modifying the Charge Storage Chemistries of β-MnO2/mwcnt Hybrid for High-Performance Aqueous Zinc Ion Batteries. Solid State Ionics, 406, Article ID: 116476. https://doi.org/10.1016/j.ssi.2024.116476 |
[12] | Yang, Y., Chuan, X., Li, J., Liu, F. and Li, A. (2020) Synthesis and Properties of Halloysite Templated Tubular MoS2 as Cathode Material for Rechargeable Aqueous Zn-Ion Batteries. International Journal of Electrochemical Science, 15, 6052-6059. https://doi.org/10.20964/2020.07.64 |
[13] | Lv, T., Peng, Y., Zhang, G., Jiang, S., Yang, Z., Yang, S., et al. (2023) How about Vanadium-Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries? Advanced Science, 10, Article ID: 2206907. https://doi.org/10.1002/advs.202206907 |
[14] | Peng, J., Zhang, W., Liu, Q., Wang, J., Chou, S., Liu, H., et al. (2022) Prussian Blue Analogues for Sodium-Ion Batteries: Past, Present, and Future. Advanced Materials, 34, Article ID: 2108384. https://doi.org/10.1002/adma.202108384 |
[15] | Yun, Q., Li, L., Hu, Z., Lu, Q., Chen, B. and Zhang, H. (2019) Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage. Advanced Materials, 32, Article ID: 1903826. https://doi.org/10.1002/adma.201903826 |
[16] | Yun, Q., Lu, Q., Zhang, X., Tan, C. and Zhang, H. (2017) Three-Dimensional Architectures Constructed from Transition-Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie International Edition, 57, 626-646. https://doi.org/10.1002/anie.201706426 |
[17] | Sheng, Z., Qi, P., Lu, Y., Liu, G., Chen, M., Gan, X., et al. (2021) Nitrogen-Doped Metallic MoS2 Derived from a Metal-Organic Framework for Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 13, 34495-34506. https://doi.org/10.1021/acsami.1c11063 |
[18] | Li, Y., Chen, M., Liu, H., Zeng, P., Zhang, D., Yu, H., et al. (2021) Catalytic-Conversion Behavior of MoS2 for Polysulfides by Nickel Introduction and Phosphorous-Doping in Advanced Lithium-Sulfur Batteries. Chemical Engineering Journal, 425, Article ID: 131640. https://doi.org/10.1016/j.cej.2021.131640 |
[19] | Francis, M.K., Rajesh, K., Bhargav, P.B. and Ahmed, N. (2023) Binder-Free Phosphorus-Doped MoS2 Flexible Anode Deposited on Carbon Cloth for High-Capacity Li-Ion Battery Applications. Journal of Materials Science, 58, 4054-4069. https://doi.org/10.1007/s10853-023-08266-0 |
[20] | Momose, T., Nakamura, A., Daniel, M. and Shimomura, M. (2018) Phosphorous Doped p-Type MoS2 Polycrystalline Thin Films via Direct Sulfurization of Mo Film. AIP Advances, 8, Article ID: 025009. https://doi.org/10.1063/1.5019223 |
[21] | Zhao, W., Liu, X., Yang, X., Liu, C., Qian, X., Sun, T., et al. (2020) Synthesis of Novel 1T/2H-MoS2 from MoO3 Nanowires with Enhanced Photocatalytic Performance. Nanomaterials, 10, Article No. 1124. https://doi.org/10.3390/nano10061124 |
[22] | Zhao, Y., Wei, S., Wang, F., Xu, L., Liu, Y., Lin, J., et al. (2020) Hatted 1T/2H-Phase MoS2 on Ni3S2 Nanorods for Efficient Overall Water Splitting in Alkaline Media. Chemistry—A European Journal, 26, 2034-2040. https://doi.org/10.1002/chem.201904307 |
[23] | Yang, F., Kang, N., Yan, J., Wang, X., He, J., Huo, S., et al. (2018) Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution. Metals, 8, Article No. 359. https://doi.org/10.3390/met8050359 |
[24] | He, P., Yan, M., Zhang, G., Sun, R., Chen, L., An, Q., et al. (2017) Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 7, Article ID: 1601920. https://doi.org/10.1002/aenm.201601920 |
[25] | 郭慧芳, 程树国, 郑舒. 从电解液看磷酸铁锂动力锂离子电池失效[J]. 电池, 2023, 53(5): 549-553. |