全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胆囊切除术后与NAFLD关系研究进展
Advances in the Study of the Relationship between Post-Cholecystectomy and NAFLD

DOI: 10.12677/jcpm.2024.32083, PP. 574-580

Keywords: 胆囊切除,非酒精性脂肪性肝病,法尼醇X受体,肠道微生物,胆汁酸
Cholecystectomy
, Non-Alcoholic Fatty Liver Disease, Farnesoid X Receptor, Gut Microbiota, Bile Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

越来越多的证据表明,胆囊切除术后是非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)的独立危险因素。然而,胆囊切除术后与NAFLD之间的关系及潜在机制尚不清楚。胆囊切除术改变了进入肠道的胆汁流量和胆汁酸(bile acid, BA)的肠肝循环,这可能改变了胆汁酸和肠道微生物之间的相互作用,法尼醇X受体(Farnesoid X receptor, FXR)作为胆汁酸代谢和肠肝循环的关键调节因子,可在肠道和肝脏之间提供对话。本综述的目的是整合有关FXR、肠道微生物群、胆汁酸在胆囊切除术后NAFLD的相关文献进展进行概述。
There is increasing evidence that post-cholecystectomy is an independent risk factor for non-alcoholic fatty liver disease (NAFLD). However, the relationship between post-cholecystectomy and NAFLD and the underlying mechanisms are unclear. Cholecystectomy alters the flow of bile into the gut and enterohepatic circulation of bile acid (BA), which may alter the interaction between bile acids and gut microorganisms, and farnesol X receptor (FXR), a key regulator of bile acid metabolism and enterohepatic circulation, may provide a dialog between the gut and the liver. The purpose of this review is to integrate an overview of relevant literature advances regarding FXR, gut microbiota, and bile acids in post-cholecystectomy NAFLD.

References

[1]  Sutherland, J.M., Mok, J., Liu, G., Karimuddin, A. and Crump, T. (2020) A Cost-Utility Study of Laparoscopic Cholecystectomy for the Treatment of Symptomatic Gallstones. Journal of Gastrointestinal Surgery, 24, 1314-1319.
https://doi.org/10.1007/s11605-019-04268-z
[2]  Cortés, V., Quezada, N., Uribe, S., Arrese, M. and Nervi, F. (2017) Effect of Cholecystectomy on Hepatic Fat Accumulation and Insulin Resistance in Non-Obese Hispanic Patients: A Pilot Study. Lipids in Health and Disease, 16, Article No. 129.
https://doi.org/10.1186/s12944-017-0525-3
[3]  Yoon, W.J., Kim, H., Park, E., Ryu, S., Chang, Y., Shin, H., et al. (2019) The Impact of Cholecystectomy on the Gut Microbiota: A Case-Control Study. Journal of Clinical Medicine, 8, Article 79.
https://doi.org/10.3390/jcm8010079
[4]  叶佳怡, 冯金华, 李卡. 胆囊切除术后患者肠道微生物群改变的研究进展[J]. 中国普外基础与临床杂志, 2022, 29(12): 1653-1659.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2023&filename=ZPWL202212020&v
[5]  Wang, Q., Lu, Q., Shao, W., Jiang, Z. and Hu, H. (2021) Dysbiosis of Gut Microbiota after Cholecystectomy Is Associated with Non‐alcoholic Fatty Liver Disease in Mice. FEBS Open Bio, 11, 2329-2339.
https://doi.org/10.1002/2211-5463.13243
[6]  Rodríguez-Antonio, I., López-Sánchez, G.N., Garrido-Camacho, V.Y., Uribe, M., Chávez-Tapia, N.C. and Nu?o-Lámbarri, N. (2020) Cholecystectomy as a Risk Factor for Non-Alcoholic Fatty Liver Disease Development. HPB, 22, 1513-1520.
https://doi.org/10.1016/j.hpb.2020.07.011
[7]  Tokuhara, D. (2021) Role of the Gut Microbiota in Regulating Non-Alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 8, Article 700058.
https://doi.org/10.3389/fnut.2021.700058
[8]  Yang, S., Yu, D., Liu, J., Qiao, Y., Gu, S., Yang, R., et al. (2023) Global Publication Trends and Research Hotspots of the Gut-Liver Axis in NAFLD: A Bibliometric Analysis. Frontiers in Endocrinology, 14, Article 1121540.
https://doi.org/10.3389/fendo.2023.1121540
[9]  Jiao, N., Baker, S.S., Chapa-Rodriguez, A., Liu, W., Nugent, C.A., Tsompana, M., et al. (2017) Suppressed Hepatic Bile Acid Signalling Despite Elevated Production of Primary and Secondary Bile Acids in NAFLD. Gut, 67, 1881-1891.
https://doi.org/10.1136/gutjnl-2017-314307
[10]  丁雪娇, 赵双清, 李雅丽. 非酒精性脂肪性肝病的流行病学及防治[J]. 中国临床保健杂志, 2021, 24(6): 742-746.
https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2022&filename=LZBJ202106006
[11]  Latenstein, C.S.S., Alferink, L.J.M., Darwish Murad, S., Drenth, J.P.H., van Laarhoven, C.J.H.M. and de Reuver, P.R. (2020) The Association between Cholecystectomy, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease: A Population-Based Study. Clinical and Translational Gastroenterology, 11, e00170.
https://doi.org/10.14309/ctg.0000000000000170
[12]  陈静, 吴建荣, 韩亚鹏, 等. 体重正常人群胆囊切除术与NAFLD的相关性分析[J]. 新疆医学, 2023, 53(7): 771-773, 794.
https://kns.cnki.net/kcms2/article/abstract?v=CNKoHtoL3RHjnjv_OU3Zy_oP5QSHh_CiZo-4bFNq1Q0CgOivm96j5NegiUWxjgZjBL1acJiOzWlJiUfj8DhVBc8raKcih1HKTAxlnBfUxnznKvznM4fNyt9YFNrJAu9i&uniplatform=NZKPT&language=gb
[13]  Pal, S.C., Castillo-Casta?eda, S.M., Díaz-Orozco, L.E., Ramírez-Mejía, M.M., Dorantes-Heredia, R., Alonso-Morales, R., et al. (2023) Molecular Mechanisms Involved in MAFLD in Cholecystectomized Patients: A Cohort Study. Genes, 14, Article 1935.
https://doi.org/10.3390/genes14101935
[14]  Lyu, J., Lin, Q., Fang, Z., Xu, Z. and Liu, Z. (2022) Complex Impacts of Gallstone Disease on Metabolic Syndrome and Nonalcoholic Fatty Liver Disease. Frontiers in Endocrinology, 13, Article 1032557.
https://doi.org/10.3389/fendo.2022.1032557
[15]  Radun, R. and Trauner, M. (2021) Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Seminars in Liver Disease, 41, 461-475.
https://doi.org/10.1055/s-0041-1731707
[16]  Molinaro, A. and Marschall, H. (2022) Bile Acid Metabolism and FXR-Mediated Effects in Human Cholestatic Liver Disorders. Biochemical Society Transactions, 50, 361-373.
https://doi.org/10.1042/bst20210658
[17]  Xu, F., Yu, Z., Liu, Y., Du, T., Yu, L., Tian, F., et al. (2023) A High-Fat, High-Cholesterol Diet Promotes Intestinal Inflammation by Exacerbating Gut Microbiome Dysbiosis and Bile Acid Disorders in Cholecystectomy. Nutrients, 15, Article 3829.
https://doi.org/10.3390/nu15173829
[18]  Jiao, T., Ma, Y., Guo, X., Ye, Y. and Xie, C. (2022) Bile Acid and Receptors: Biology and Drug Discovery for Nonalcoholic Fatty Liver Disease. Acta Pharmacologica Sinica, 43, 1103-1119.
https://doi.org/10.1038/s41401-022-00880-z
[19]  Park, S., Zhang, T., Yue, Y. and Wu, X. (2022) Effects of Bile Acid Modulation by Dietary Fat, Cholecystectomy, and Bile Acid Sequestrant on Energy, Glucose, and Lipid Metabolism and Gut Microbiota in Mice. International Journal of Molecular Sciences, 23, Article 5935.
https://doi.org/10.3390/ijms23115935
[20]  Kumar, T., Pandey, R. and Chauhan, N.S. (2020) Hypoxia Inducible Factor-1α: The Curator of Gut Homeostasis. Frontiers in Cellular and Infection Microbiology, 10, Article 227.
https://doi.org/10.3389/fcimb.2020.00227
[21]  Bertolini, A., Fiorotto, R. and Strazzabosco, M. (2022) Bile Acids and Their Receptors: Modulators and Therapeutic Targets in Liver Inflammation. Seminars in Immunopathology, 44, 547-564.
https://doi.org/10.1007/s00281-022-00935-7
[22]  Ren, X., Xu, J., Zhang, Y., Chen, G., Zhang, Y., Huang, Q., et al. (2020) Bacterial Alterations in Post-Cholecystectomy Patients Are Associated with Colorectal Cancer. Frontiers in Oncology, 10, Article 1418.
https://doi.org/10.3389/fonc.2020.01418
[23]  Frost, F., Kacprowski, T., Rühlemann, M., Weiss, S., Bang, C., Franke, A., et al. (2021) Carrying Asymptomatic Gallstones Is Not Associated with Changes in Intestinal Microbiota Composition and Diversity but Cholecystectomy with Significant Dysbiosis. Scientific Reports, 11, Article No. 6677.
https://doi.org/10.1038/s41598-021-86247-6
[24]  Henry, Z., Meadows, V. and Guo, G.L. (2023) FXR and NASH: An Avenue for Tissue-Specific Regulation. Hepatology Communications, 7, e0127.
https://doi.org/10.1097/hc9.0000000000000127
[25]  Zhou, W. and Anakk, S. (2022) Enterohepatic and Non-Canonical Roles of Farnesoid X Receptor in Controlling Lipid and Glucose Metabolism. Molecular and Cellular Endocrinology, 549, Article ID: 111616.
https://doi.org/10.1016/j.mce.2022.111616
[26]  Ramos Pittol, J.M., Milona, A., Morris, I., Willemsen, E.C.L., van der Veen, S.W., Kalkhoven, E., et al. (2020) FXR Isoforms Control Different Metabolic Functions in Liver Cells via Binding to Specific DNA Motifs. Gastroenterology, 159, 1853-1865.e10.
https://doi.org/10.1053/j.gastro.2020.07.036
[27]  Li, Y., Cao, C., Zhou, Y., Nie, Y., Cao, J. and Zhou, Y. (2020) The Roles and Interaction of FXR and Ppars in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Arab Journal of Gastroenterology, 21, 162-168.
https://doi.org/10.1016/j.ajg.2020.04.018
[28]  Ijssennagger, N., van Rooijen, K.S., Magnúsdóttir, S., Ramos Pittol, J.M., Willemsen, E.C.L., de Zoete, M.R., et al. (2021) Ablation of Liver FXR Results in an Increased Colonic Mucus Barrier in Mice. JHEP Reports, 3, Article ID: 100344.
https://doi.org/10.1016/j.jhepr.2021.100344
[29]  Kumari, A., Pal Pathak, D. and Asthana, S. (2020) Bile Acids Mediated Potential Functional Interaction between FXR and FATP5 in the Regulation of Lipid Metabolism. International Journal of Biological Sciences, 16, 2308-2322.
https://doi.org/10.7150/ijbs.44774
[30]  Liu, X., Wang, J., Li, M., Qiu, J., Li, X., Qi, L., et al. (2023) Farnesoid X Receptor Is an Important Target for the Treatment of Disorders of Bile Acid and Fatty Acid Metabolism in Mice with Nonalcoholic Fatty Liver Disease Combined with Cholestasis. Journal of Gastroenterology and Hepatology, 38, 1438-1446.
https://doi.org/10.1111/jgh.16279
[31]  Li, Z., Yuan, H., Chu, H. and Yang, L. (2023) The Crosstalk between Gut Microbiota and Bile Acids Promotes the Development of Non-Alcoholic Fatty Liver Disease. Microorganisms, 11, Article 2059.
https://doi.org/10.3390/microorganisms11082059
[32]  Panzitt, K., Zollner, G., Marschall, H. and Wagner, M. (2022) Recent Advances on FXR-Targeting Therapeutics. Molecular and Cellular Endocrinology, 552, Article ID: 111678.
https://doi.org/10.1016/j.mce.2022.111678
[33]  Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., et al. (2020) Bile Acid Treatment and FXR Agonism Lower Postprandial Lipemia in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G682-G693.
https://doi.org/10.1152/ajpgi.00386.2018
[34]  Mori, H., Svegliati Baroni, G., Marzioni, M., Di Nicola, F., Santori, P., Maroni, L., et al. (2022) Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites, 12, Article 647.
https://doi.org/10.3390/metabo12070647
[35]  Deng, W., Fan, W., Tang, T., Wan, H., Zhao, S., Tan, Y., et al. (2022) Farnesoid X Receptor Deficiency Induces Hepatic Lipid and Glucose Metabolism Disorder via Regulation of Pyruvate Dehydrogenase Kinase 4. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3589525.
https://doi.org/10.1155/2022/3589525
[36]  Xue, R., Su, L., Lai, S., Wang, Y., Zhao, D., Fan, J., et al. (2021) Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells, 10, Article 2806.
https://doi.org/10.3390/cells10112806
[37]  Clifford, B.L., Sedgeman, L.R., Williams, K.J., Morand, P., Cheng, A., Jarrett, K.E., et al. (2021) FXR Activation Protects against NAFLD via Bile-Acid-Dependent Reductions in Lipid Absorption. Cell Metabolism, 33, 1671-1684.e4.
https://doi.org/10.1016/j.cmet.2021.06.012
[38]  Yang, J., van Dijk, T.H., Koehorst, M., Havinga, R., de Boer, J.F., Kuipers, F., et al. (2023) Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. International Journal of Molecular Sciences, 24, Article 4132.
https://doi.org/10.3390/ijms24044132
[39]  Zhao, L., Xuan, Z., Song, W., Zhang, S., Li, Z., Song, G., et al. (2020) A Novel Role for Farnesoid X Receptor in the Bile Acid‐mediated Intestinal Glucose Homeostasis. Journal of Cellular and Molecular Medicine, 24, 12848-12861.
https://doi.org/10.1111/jcmm.15881
[40]  Di Ciaula, A., Garruti, G., Wang, D.Q.-H. and Portincasa, P. (2018) Cholecystectomy and Risk of Metabolic Syndrome. European Journal of Internal Medicine, 53, 3-11.
https://doi.org/10.1016/j.ejim.2018.04.019
[41]  Qi, L., Tian, Y. and Chen, Y. (2019) Gall Bladder: The Metabolic Orchestrator. Diabetes/Metabolism Research and Reviews, 35, e3140.
https://doi.org/10.1002/dmrr.3140
[42]  Garruti, G., Wang, D.Q., Di Ciaula, A. and Portincasa, P. (2018) Cholecystectomy: A Way Forward and Back to Metabolic Syndrome? Laboratory Investigation, 98, 4-6.
https://doi.org/10.1038/labinvest.2017.129
[43]  Xu, F., Chen, R., Zhang, C., Wang, H., Ding, Z., Yu, L., et al. (2023) Cholecystectomy Significantly Alters Gut Microbiota Homeostasis and Metabolic Profiles: A Cross-Sectional Study. Nutrients, 15, Article 4399.
https://doi.org/10.3390/nu15204399
[44]  Nian, F., Wu, L., Xia, Q., Tian, P., Ding, C. and Lu, X. (2023) Akkermansia muciniphila and Bifidobacterium bifidum Prevent NAFLD by Regulating FXR Expression and Gut Microbiota. Journal of Clinical and Translational Hepatology, 11, 763-776.
https://doi.org/10.14218/jcth.2022.00415

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133