|
放疗联合免疫治疗在非小细胞肺癌中的研究进展
|
Abstract:
肺癌(lung cancer, LC)是全球最常见的癌症之一,也是全球癌症相关死亡的主要原因,其中约80%的病例为非小细胞肺癌(non-small-cell lung cancer, NSCLC)。在过去十年中,免疫检查点抑制剂(ICIs),如程序性死亡1 (PD-1)和程序性死亡配体1 (PD-L1)抑制剂,极大地改变了NSCLC的治疗策略。近年来,事后分析和早期临床试验提供了越来越多的证据,证明放射治疗(RT)和免疫疗法在治疗从早期到转移性疾病的NSCLC方面具有协同作用。放射治疗似乎不仅能增强免疫疗法对靶病灶的作用,还能在不直接暴露于辐射的情况下对远处病灶产生抗肿瘤反应。在这篇综述中,我们将介绍免疫疗法和放射疗法的生物学基础、有关生物标志物的新证据,以及支持将放射免疫疗法用于早期、局部晚期和转移性NSCLC的临床前和临床数据。
Lung cancer is one of the most common cancers and the leading cause of cancer-related deaths worldwide, and about 80% of these cases are non-small cell lung cancer (NSCLC). Over the past decade, immune checkpoint inhibitors (ICIs), such as programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors, have dramatically altered the therapeutic strategies for NSCLC. In recent years, post-hoc analyses and early clinical trials have provided increasing evidence of the synergistic effects of radiation therapy (RT) and immunotherapy in the treatment of NSCLC from early to metastatic disease. Radiation therapy appears to not only enhance the effect of immunotherapy on the target lesion, but also produce an antitumor response on distant lesions without direct exposure to radiation. In this review, we will present the biological basis of immunotherapy and radiation therapy, new evidence regarding biomarkers, and preclinical and clinical data supporting the use of radioimmunotherapy for early, locally advanced, and metastatic NSCLC.
[1] | Agrawal, V., Benjamin, K.T. and Ko, E.C. (2020) Radiotherapy and Immunotherapy Combinations for Lung Cancer. Current Oncology Reports, 23, Article No. 4. https://doi.org/10.1007/s11912-020-00993-w |
[2] | Curran, W.J., Paulus, R., Langer, C.J., Komaki, R., Lee, J.S., Hauser, S., et al. (2011) Sequential vs Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. JNCI Journal of the National Cancer Institute, 103, 1452-1460. https://doi.org/10.1093/jnci/djr325 |
[3] | Aupérin, A., Le Péchoux, C., Rolland, E., Curran, W.J., Furuse, K., Fournel, P., et al. (2010) Meta-Analysis of Concomitant versus Sequential Radiochemotherapy in Locally Advanced Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 28, 2181-2190. https://doi.org/10.1200/jco.2009.26.2543 |
[4] | Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. New England Journal of Medicine, 379, 2342-2350. https://doi.org/10.1056/nejmoa1809697 |
[5] | Dams, R.V., Yuan, Y., Robinson, C.G. and Lee, P. (2020) Immunotherapy and Radiation Therapy for Non-Small Cell Lung Cancer—A Stimulating Partnership. Seminars in Respiratory and Critical Care Medicine, 41, 360-368. https://doi.org/10.1055/s-0039-3399578 |
[6] | Zhang, Y., Huang, C. and Li, S. (2023) Influence of Treatment-Related Lymphopenia on the Efficacy of Immune Checkpoint Inhibitors in Lung Cancer: A Meta-Analysis. Frontiers in Oncology, 13, Article 1287555. https://doi.org/10.3389/fonc.2023.1287555 |
[7] | Kang, J., Zhang, C. and Zhong, W. (2021) Neoadjuvant Immunotherapy for Non-Small Cell Lung Cancer: State of the Art. Cancer Communications, 41, 287-302. https://doi.org/10.1002/cac2.12153 |
[8] | Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. Journal of Clinical Investigation, 124, 687-695. https://doi.org/10.1172/jci67313 |
[9] | Bassanelli, M., Ricciuti, B., Giannarelli, D., Cecere, F.L., Roberto, M., Giacinti, S., et al. (2021) Systemic Effect of Radiotherapy before or after Nivolumab in Lung Cancer: An Observational, Retrospective, Multicenter Study. Tumori Journal, 108, 250-257. https://doi.org/10.1177/03008916211004733 |
[10] | Theelen, W.S., de Jong, M.C. and Baas, P. (2020) Synergizing Systemic Responses by Combining Immunotherapy with Radiotherapy in Metastatic Non-Small Cell Lung Cancer: The Potential of the Abscopal Effect. Lung Cancer, 142, 106-113. https://doi.org/10.1016/j.lungcan.2020.02.015 |
[11] | Formenti, S.C., Rudqvist, N., Golden, E., Cooper, B., Wennerberg, E., Lhuillier, C., et al. (2018) Radiotherapy Induces Responses of Lung Cancer to CTLA-4 Blockade. Nature Medicine, 24, 1845-1851. https://doi.org/10.1038/s41591-018-0232-2 |
[12] | Liu, Y., Dong, Y., Kong, L., Shi, F., Zhu, H. and Yu, J. (2018) Abscopal Effect of Radiotherapy Combined with Immune Checkpoint Inhibitors. Journal of Hematology & Oncology, 11, Article No. 104. https://doi.org/10.1186/s13045-018-0647-8 |
[13] | Beasley, M.B., Brambilla, E. and Travis, W.D. (2005) The 2004 World Health Organization Classification of Lung Tumors. Seminars in Roentgenology, 40, 90-97. https://doi.org/10.1053/j.ro.2005.01.001 |
[14] | Souquet, P.J. and Geriniere, L. (2001) The Role of Chemotherapy in Early Stage of Non-Small Cell Lung Cancer. Lung Cancer, 34, S155-S158. https://doi.org/10.1016/s0169-5002(01)00361-0 |
[15] | Robinson, C.G., DeWees, T.A., El Naqa, I.M., Creach, K.M., Olsen, J.R., Crabtree, T.D., et al. (2013) Patterns of Failure after Stereotactic Body Radiation Therapy or Lobar Resection for Clinical Stage I Non-Small-Cell Lung Cancer. Journal of Thoracic Oncology, 8, 192-201. https://doi.org/10.1097/JTO.0b013e31827ce361 |
[16] | Altorki, N.K., McGraw, T.E., Borczuk, A.C., Saxena, A., Port, J.L., Stiles, B.M., et al. (2021) Neoadjuvant Durvalumab with or without Stereotactic Body Radiotherapy in Patients with Early-Stage Non-Small-Cell Lung Cancer: A Single-Centre, Randomised Phase 2 Trial. The Lancet Oncology, 22, 824-835. https://doi.org/10.1016/s1470-2045(21)00149-2 |
[17] | Tian, S., Switchenko, J.M., Buchwald, Z.S., Patel, P.R., Shelton, J.W., Kahn, S.E., et al. (2020) Lung Stereotactic Body Radiation Therapy and Concurrent Immunotherapy: A Multicenter Safety and Toxicity Analysis. International Journal of Radiation Oncology?Biology?Physics, 108, 304-313. https://doi.org/10.1016/j.ijrobp.2019.12.030 |
[18] | Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Cs?szi, T., Fül?p, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833. https://doi.org/10.1056/nejmoa1606774 |
[19] | Verma, V., Shostrom, V.K., Zhen, W., Zhang, M., Braunstein, S.E., Holland, J., et al. (2017) Influence of Fractionation Scheme and Tumor Location on Toxicities after Stereotactic Body Radiation Therapy for Large (≥5 cm) Non-Small Cell Lung Cancer: A Multi-Institutional Analysis. International Journal of Radiation Oncology?Biology?Physics, 97, 778-785. https://doi.org/10.1016/j.ijrobp.2016.11.049 |
[20] | Verma, V., Shostrom, V.K., Kumar, S.S., Zhen, W., Hallemeier, C.L., Braunstein, S.E., et al. (2016) Multi-Institutional Experience of Stereotactic Body Radiotherapy for Large (≥5 Centimeters) Non-Small Cell Lung Tumors. Cancer, 123, 688-696. https://doi.org/10.1002/cncr.30375 |
[21] | Verma, V., McMillan, M.T., Grover, S. and Simone, C.B. (2017) Stereotactic Body Radiation Therapy and the Influence of Chemotherapy on Overall Survival for Large (≥5 Centimeter) Non-Small Cell Lung Cancer. International Journal of Radiation Oncology?Biology?Physics, 97, 146-154. https://doi.org/10.1016/j.ijrobp.2016.09.036 |
[22] | Fujimoto, D., Uehara, K., Sato, Y., Sakanoue, I., Ito, M., Teraoka, S., et al. (2017) Alteration of PD-L1 Expression and Its Prognostic Impact after Concurrent Chemoradiation Therapy in Non-Small Cell Lung Cancer Patients. Scientific Reports, 7, Article No. 11373. https://doi.org/10.1038/s41598-017-11949-9 |
[23] | Badiyan, S.N., Roach, M.C., Chuong, M.D., Rice, S.R., Onyeuku, N.E., Remick, J., et al. (2018) Combining Immunotherapy with Radiation Therapy in Thoracic Oncology. Journal of Thoracic Disease, 10, S2492-S2507. https://doi.org/10.21037/jtd.2018.05.73 |
[24] | Simone II, C.B., Berman, A.T. and Jabbour, S.K. (2017) Harnessing the Potential Synergy of Combining Radiation Therapy and Immunotherapy for Thoracic Malignancies. Translational Lung Cancer Research, 6, 109-112. https://doi.org/10.21037/tlcr.2017.04.05 |
[25] | Jabbour, S.K., Berman, A.T. and Simone II, C.B. (2007) Integrating Immunotherapy into Chemoradiation Regimens for Medically Inoperable Locally Advanced Non-Small Cell Lung Cancer. Translational Lung Cancer Research, 6, 113-118. https://doi.org/10.21037/tlcr.2017.04.02 |
[26] | Gray, J.E., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., et al. (2020) Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC—Update from PACIFIC. Journal of Thoracic Oncology, 15, 288-293. https://doi.org/10.1016/j.jtho.2019.10.002 |
[27] | Shaverdian, N., Lisberg, A.E., Bornazyan, K., Veruttipong, D., Goldman, J.W., Formenti, S.C., et al. (2017) Previous Radiotherapy and the Clinical Activity and Toxicity of Pembrolizumab in the Treatment of Non-Small-Cell Lung Cancer: A Secondary Analysis of the KEYNOTE-001 Phase 1 Trial. The Lancet Oncology, 18, 895-903. https://doi.org/10.1016/s1470-2045(17)30380-7 |
[28] | Mok, T.S.K., Wu, Y., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830. https://doi.org/10.1016/s0140-6736(18)32409-7 |
[29] | Mittal, D., Gubin, M.M., Schreiber, R.D. and Smyth, M.J. (2014) New Insights into Cancer Immunoediting and Its Three Component Phases—Elimination, Equilibrium and Escape. Current Opinion in Immunology, 27, 16-25. https://doi.org/10.1016/j.coi.2014.01.004 |
[30] | Pardoll, D.M. (2012) Immunology Beats Cancer: A Blueprint for Successful Translation. Nature Immunology, 13, 1129-1132. https://doi.org/10.1038/ni.2392 |
[31] | Rizzo, A. and Ricci, A.D. (2022) PD-L1, TMB, and Other Potential Predictors of Response to Immunotherapy for Hepatocellular Carcinoma: How Can They Assist Drug Clinical Trials? Expert Opinion on Investigational Drugs, 31, 415-423. https://doi.org/10.1080/13543784.2021.1972969 |
[32] | Brody, R., Zhang, Y., Ballas, M., Siddiqui, M.K., Gupta, P., Barker, C., et al. (2017) PD-L1 Expression in Advanced NSCLC: Insights into Risk Stratification and Treatment Selection from a Systematic Literature Review. Lung Cancer, 112, 200-215. https://doi.org/10.1016/j.lungcan.2017.08.005 |
[33] | Zaric, B., Brcic, L., Buder, A., Brandstetter, A., Buresch, J.O., Traint, S., et al. (2018) PD-1 and PD-L1 Protein Expression Predict Survival in Completely Resected Lung Adenocarcinoma. Clinical Lung Cancer, 19, e957-e963. https://doi.org/10.1016/j.cllc.2018.08.014 |
[34] | Yu, H., Chen, Z., Ballman, K.V., Watson, M.A., Govindan, R., Lanc, I., et al. (2019) Correlation of PD-L1 Expression with Tumor Mutation Burden and Gene Signatures for Prognosis in Early-Stage Squamous Cell Lung Carcinoma. Journal of Thoracic Oncology, 14, 25-36. https://doi.org/10.1016/j.jtho.2018.09.006 |
[35] | Tsao, M.-S., Le Teuff, G., Shepherd, F.A., Landais, C., Hainaut, P., Filipits, M., et al. (2017) PD-L1 Protein Expression Assessed by Immunohistochemistry Is Neither Prognostic Nor Predictive of Benefit from Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer. Annals of Oncology, 28, 882-889. https://doi.org/10.1093/annonc/mdx003 |
[36] | Chalmers, Z.R., Connelly, C.F., Fabrizio, D., Gay, L., Ali, S.M., Ennis, R., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34. https://doi.org/10.1186/s13073-017-0424-2 |
[37] | Owada-Ozaki, Y., Muto, S., Takagi, H., Inoue, T., Watanabe, Y., Fukuhara, M., et al. (2018) Prognostic Impact of Tumor Mutation Burden in Patients with Completely Resected Non-Small Cell Lung Cancer: Brief Report. Journal of Thoracic Oncology, 13, 1217-1221. https://doi.org/10.1016/j.jtho.2018.04.003 |
[38] | Gandara, D.R., Paul, S.M., Kowanetz, M., Schleifman, E., Zou, W., Li, Y., et al. (2018) Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nature Medicine, 24, 1441-1448. https://doi.org/10.1038/s41591-018-0134-3 |
[39] | Yarchoan, M., Hopkins, A. and Jaffee, E.M. (2017) Tumor Mutational Burden and Response Rate to PD-1 Inhibition. The New England Journal of Medicine, 377, 2500-2501. https://doi.org/10.1056/NEJMc1713444 |
[40] | Ettinger, D.S., Wood, D.E., Aggarwal, C., et al. (2019) NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 1.2020. Journal of the National Comprehensive Cancer Network, 17, 1464-1472. https://doi.org/10.6004/jnccn.2019.0059 |
[41] | Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J., et al. (2015) Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128. https://doi.org/10.1126/science.aaa1348 |
[42] | Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376, 2415-2426. https://doi.org/10.1056/nejmoa1613493 |
[43] | Rizvi, H., Sanchez-Vega, F., La, K., Chatila, W., Jonsson, P., Halpenny, D., et al. (2018) Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled with Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 36, 633-641. https://doi.org/10.1200/JCO.2017.75.3384 |
[44] | Li, T., Zhao, L., Yang, Y., Wang, Y., Zhang, Y., Guo, J., et al. (2021) T Cells Expanded from PD-1+ Peripheral Blood Lymphocytes Share More Clones with Paired Tumor-Infiltrating Lymphocytes. Cancer Research, 81, 2184-2194. https://doi.org/10.1158/0008-5472.can-20-2300 |
[45] | Farhood, B., Najafi, M. and Mortezaee, K. (2019) CD8+ Cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review. Journal of Cellular Physiology, 234, 8509-8521. https://doi.org/10.1002/jcp.27782 |
[46] | Liu, H., Zhang, T., Ye, J., Li, H., Huang, J., Li, X., et al. (2012) Tumor-Infiltrating Lymphocytes Predict Response to Chemotherapy in Patients with Advance Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 61, 1849-1856. https://doi.org/10.1007/s00262-012-1231-7 |
[47] | Masucci, G.V., Cesano, A., Hawtin, R., Janetzki, S., Zhang, J., Kirsch, I., et al. (2016) Validation of Biomarkers to Predict Response to Immunotherapy in Cancer: Volume I—Pre-Analytical and Analytical Validation. Journal for ImmunoTherapy of Cancer, 4, Article 76. https://doi.org/10.1186/s40425-016-0178-1 |
[48] | (2018) High TMB Predicts Immunotherapy Benefit. Cancer Discovery, 8, Article 668. https://doi.org/10.1158/2159-8290.CD-NB2018-048 |
[49] | Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206. https://doi.org/10.1038/s41588-018-0312-8 |
[50] | Demaria, S., Kawashima, N., Yang, A.M., Devitt, M.L., Babb, J.S., Allison, J.P., et al. (2005) Immune-Mediated Inhibition of Metastases after Treatment with Local Radiation and CTLA-4 Blockade in a Mouse Model of Breast Cancer. Clinical Cancer Research, 11, 728-734. https://doi.org/10.1158/1078-0432.728.11.2 |
[51] | Chakravarty, P.K., Alfieri, A., Thomas, E.K., et al. (1999) Flt3-Ligand Administration after Radiation Therapy Prolongs Survival in a Murine Model of Metastatic Lung Cancer. Cancer Research, 59, 6028-6032. |
[52] | Nikitina, E.Y. and Gabrilovich, D.I. (2001) Combination of Gamma-Irradiation and Dendritic Cell Administration Induces a Potent Antitumor Response in Tumor-Bearing Mice: Approach to Treatment of Advanced Stage Cancer. International Journal of Cancer, 94, 825-833. https://doi.org/10.1002/1097-0215(20011215)94:6<825::AID-IJC1545>3.0.CO;2-5 |
[53] | Young, K.H., Baird, J.R., Savage, T., Cottam, B., Friedman, D., Bambina, S., et al. (2016) Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLOS ONE, 11, e0157164. https://doi.org/10.1371/journal.pone.0157164 |
[54] | Ko, E.C., Raben, D. and Formenti, S.C. (2018) The Integration of Radiotherapy with Immunotherapy for the Treatment of Non-Small Cell Lung Cancer. Clinical Cancer Research, 24, 5792-5806. https://doi.org/10.1158/1078-0432.ccr-17-3620 |
[55] | Levy, A., Massard, C., Soria, J.-C. and Deutsch, E. (2016) Concurrent Irradiation with the Anti-Programmed Cell Death Ligand-1 Immune Checkpoint Blocker Durvalumab: Single Centre Subset Analysis from a Phase 1/2 Trial. European Journal of Cancer, 68, 156-162. https://doi.org/10.1016/j.ejca.2016.09.013 |
[56] | Hwang, W.L., Niemierko, A., Hwang, K.L., Hubbeling, H., Schapira, E., Gainor, J.F., et al. (2018) Clinical Outcomes in Patients with Metastatic Lung Cancer Treated with PD-1/PD-L1 Inhibitors and Thoracic Radiotherapy. JAMA Oncology, 4, 253-255. https://doi.org/10.1001/jamaoncol.2017.3808 |
[57] | Lu, C., Guan, J., Lu, S., Jin, Q., Rousseau, B., Lu, T., et al. (2021) DNA Sensing in Mismatch Repair-Deficient Tumor Cells Is Essential for Anti-Tumor Immunity. Cancer Cell, 39, 96-108.e6. https://doi.org/10.1016/j.ccell.2020.11.006 |
[58] | Motz, G.T. and Coukos, G. (2013) Deciphering and Reversing Tumor Immune Suppression. Immunity, 39, 61-73. https://doi.org/10.1016/j.immuni.2013.07.005 |
[59] | Mole, R.H. (1953) Whole Body Irradiation; Radiobiology or Medicine? British Journal of Radiology, 26, 234-241. https://doi.org/10.1259/0007-1285-26-305-234 |
[60] | Sharabi, A.B., Lim, M., DeWeese, T.L. and Drake, C.G. (2015) Radiation and Checkpoint Blockade Immunotherapy: Radiosensitisation and Potential Mechanisms of Synergy. The Lancet Oncology, 16, e498-e509. https://doi.org/10.1016/S1470-2045(15)00007-8 |
[61] | McLaughlin, M., Patin, E.C., Pedersen, M., Wilkins, A., Dillon, M.T., Melcher, A.A., et al. (2020) Inflammatory Microenvironment Remodelling by Tumour Cells after Radiotherapy. Nature Reviews Cancer, 20, 203-217. https://doi.org/10.1038/s41568-020-0246-1 |