全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

苯胺辅助层状MoO3用于构建高性能锌离子电池的研究
Aniline-Assisted Layered MoO3 for the Construction of High-Performance Zinc Ion Batteries

DOI: 10.12677/ms.2024.146098, PP. 873-881

Keywords: 锌离子电池,正极材料,三氧化钼,PANI插层
Zinc Ion Battery
, Cathode Material, MoO3, PANI Interpolation

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热法将苯胺(PANI)插入MoO3层间,PANI的插层促进了MoO3的电荷储存,增强了导电性,同时减弱了Zn2+与MoO3主体之间的静电相互作用,加速Zn2+的传输。鉴于这些特性,PANI-MoO3//Zn电池在1 A?g?1电流条件下表现出超高的比容量352 mAh?g?1,具有卓越的倍率性能在当电流密度从1 A?g?1增加到10 A?g?1时,PANI-MoO3电极仍然保持着133 mAh?g?1的放电比容量(保持率为40%),而MoO3电极仅有72 mAh?g?1的放电比容量(保持率为29%)。此外,还具备出色的循环性能,经过1000次循环后,PANI-MoO3//Zn电池的容量保持率比MoO3//Zn电池提高了132%。
The PANI was inserted between the MoO3 layers using a hydrothermal method, and the insertion of PANI promoted the charge storage of MoO3 and enhanced the electrical conductivity, while attenuating the electrostatic interactions between Zn2+ and the main body of MoO3 and accelerating the transport of Zn2+. In view of these properties, the PANI-MoO3//Zn battery exhibits an ultra-high specific capacity of 352 mAh?g?1 at a current of 1 A?g?1, with excellent multiplicative performance at when the current density is increased from 1 A?g?1 to 10 A?g?1 When the current density is increased from 1 A?g?1 to 10 A?g?1, the PANI-MoO3 electrode still maintains a discharge specific capacity of 133 mAh?g?1 (40% retention), while the MoO3 electrode has a discharge specific capacity of only 72 mAh?g?1 (29% retention). In addition, there is excellent cycling performance, with the PANI-MoO3//Zn battery showing a 132% improvement in capacity retention over the MoO3//Zn battery after 1000 cycles.

References

[1]  Cheng, Y., Wang, H., Qian, T. and Yan, C. (2022) Interfacial Engineering of Carbon-Based Materials for Efficient Electrocatalysis: Recent Advances and Future. EnergyChem, 4, Article ID: 100074.
https://doi.org/10.1016/j.enchem.2022.100074
[2]  Lei, S., Liu, Z., Liu, C., Li, J., Lu, B., Liang, S., et al. (2022) Opportunities for Biocompatible and Safe Zinc-Based Batteries. Energy & Environmental Science, 15, 4911-4927.
https://doi.org/10.1039/d2ee02267b
[3]  Wu, X., Ru, Y., Bai, Y., Zhang, G., Shi, Y. and Pang, H. (2022) PBA Composites and Their Derivatives in Energy and Environmental Applications. Coordination Chemistry Reviews, 451, Article ID: 214260.
https://doi.org/10.1016/j.ccr.2021.214260
[4]  Manthiram, A. (2020) A Reflection on Lithium-Ion Battery Cathode Chemistry. Nature Communications, 11, Article No. 1550.
https://doi.org/10.1038/s41467-020-15355-0
[5]  Wu, F., Maier, J. and Yu, Y. (2020) Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-Ion Batteries. Chemical Society Reviews, 49, 1569-1614.
https://doi.org/10.1039/c7cs00863e
[6]  Wan, F. and Niu, Z. (2019) Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries. Angewandte Chemie, 131, 16508-16517.
https://doi.org/10.1002/ange.201903941
[7]  Yang, S., Zhang, F., Ding, H., He, P. and Zhou, H. (2018) Lithium Metal Extraction from Seawater. Joule, 2, 1648-1651.
https://doi.org/10.1016/j.joule.2018.07.006
[8]  Mao, C., Chang, Y., Zhao, X., Dong, X., Geng, Y., Zhang, N., et al. (2022) Functional Carbon Materials for High-Performance Zn Metal Anodes. Journal of Energy Chemistry, 75, 135-153.
https://doi.org/10.1016/j.jechem.2022.07.034
[9]  Jia, X., Liu, C., Neale, Z.G., Yang, J. and Cao, G. (2020) Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 120, 7795-7866.
https://doi.org/10.1021/acs.chemrev.9b00628
[10]  Li, H., Ma, L., Han, C., Wang, Z., Liu, Z., Tang, Z., et al. (2019) Advanced Rechargeable Zinc-Based Batteries: Recent Progress and Future Perspectives. Nano Energy, 62, 550-587.
https://doi.org/10.1016/j.nanoen.2019.05.059
[11]  Yang, C., Liu, X., Yang, Z., Gu, L. and Yu, Y. (2016) Improvement of Lithium Storage Performance of Molybdenum Trioxide by a Synergistic Effect of Surface Coating and Oxygen Vacancies. Advanced Materials Interfaces, 3, Article ID: 1600730.
https://doi.org/10.1002/admi.201600730
[12]  Jiang, H., Shin, W., Ma, L., Hong, J.J., Wei, Z., Liu, Y., et al. (2020) A High-Rate Aqueous Proton Battery Delivering Power below ?78 ?C via an Unfrozen Phosphoric Acid. Advanced Energy Materials, 10, Article ID: 2000968.
https://doi.org/10.1002/aenm.202000968
[13]  Su, Z., Ren, W., Guo, H., Peng, X., Chen, X. and Zhao, C. (2020) Ultrahigh Areal Capacity Hydrogen-Ion Batteries with Moo3 Loading over 90 mg cm?2. Advanced Functional Materials, 30, Article ID: 2005477.
https://doi.org/10.1002/adfm.202005477
[14]  Barai, H.R., Lopa, N.S., Ahmed, F., Khan, N.A., Ansari, S.A., Joo, S.W., et al. (2020) Synthesis of Cu-Doped Mn3O4@mn-Doped CuO Nanostructured Electrode Materials by a Solution Process for High-Performance Electrochemical Pseudocapacitors. ACS Omega, 5, 22356-22366.
https://doi.org/10.1021/acsomega.0c02740
[15]  Huang, M., Mai, Y., Zhao, L., Liang, X., Fang, Z. and Jie, X. (2021) Tuning the Kinetics of Zinc Ion in MoS2 by Polyaniline Intercalation. Electrochimica Acta, 388, Article ID: 138624.
https://doi.org/10.1016/j.electacta.2021.138624
[16]  Liu, Y., Pan, Z., Tian, D., Hu, T., Jiang, H., Yang, J., et al. (2020) Employing “One for Two” Strategy to Design Polyaniline-Intercalated Hydrated Vanadium Oxide with Expanded Interlayer Spacing for High-Performance Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 399, Article ID: 125842.
https://doi.org/10.1016/j.cej.2020.125842
[17]  Zhang, Z., Xi, B., Wang, X., Ma, X., Chen, W., Feng, J., et al. (2021) Oxygen Defects Engineering of VO2·xH2O Nanosheets via in Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage. Advanced Functional Materials, 31, Article ID: 2103070.
https://doi.org/10.1002/adfm.202103070
[18]  Fang, Z., Liu, C., Li, X., Peng, L., Ding, W., Guo, X., et al. (2022) Systematic Modification of MoO3-Based Cathode by the Intercalation Engineering for High-Performance Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article ID: 2210010.
https://doi.org/10.1002/adfm.202210010
[19]  Liang, R., Cao, H. and Qian, D. (2011) MoO3 Nanowires as Electrochemical Pseudocapacitor Materials. Chemical Communications, 47, Article No. 10305.
https://doi.org/10.1039/c1cc14030b
[20]  Siciliano, T., Tepore, A., Filippo, E., Micocci, G. and Tepore, M. (2009) Characteristics of Molybdenum Trioxide Nanobelts Prepared by Thermal Evaporation Technique. Materials Chemistry and Physics, 114, 687-691.
https://doi.org/10.1016/j.matchemphys.2008.10.018
[21]  Feng, Z., Sun, J., Liu, Y., Jiang, H., Cui, M., Hu, T., et al. (2021) Engineering Interlayer Space of Vanadium Oxide by Pyridinesulfonic Acid-Assisted Intercalation of Polypyrrole Enables Enhanced Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 13, 61154-61165.
https://doi.org/10.1021/acsami.1c18950
[22]  Feng, Z., Zhang, Y., Zhao, Y., Sun, J., Liu, Y., Jiang, H., et al. (2022) Dual Intercalation of Inorganics-Organics for Synergistically Tuning the Layer Spacing of V2O5·nH2O to Boost Zn2+ Storage for Aqueous Zinc-Ion Batteries. Nanoscale, 14, 8776-8788.
https://doi.org/10.1039/d2nr02122f
[23]  Patterson, T.A., Carver, J.C., Leyden, D.E. and Hercules, D.M. (1976) A Surface Study of Cobalt-Molybdena-Alumina Catalysts Using X-Ray Photoelectron Spectroscopy. The Journal of Physical Chemistry, 80, 1700-1708.
https://doi.org/10.1021/j100556a011
[24]  Tan, Y., He, J., Wang, B., Li, C.C. and Wang, T. (2023) Tuning the Layer Structure of Molybdenum Trioxide towards High-Performance Aqueous Zinc-Ion Batteries. Chinese Chemical Letters, 34, Article ID: 107410.
https://doi.org/10.1016/j.cclet.2022.04.008
[25]  Chen, L., Zhang, Z., Ma, Y., Wang, Y., Xiao, H., Xu, M., et al. (2023) Tuning Ionic Conduction and Structure Stability of Ammonium Vanadate by Intercalating Polyaniline Molecules for Advanced Aqueous Zinc-Ion Batteries. Inorganic Chemistry Frontiers, 10, 1926-1937.
https://doi.org/10.1039/d2qi02669d
[26]  Wang, Z., Tang, X., Yuan, S., Bai, M., Wang, H., Liu, S., et al. (2021) Engineering Vanadium Pentoxide Cathode for the Zero-strain Cation Storage via a Scalable Intercalation-polymerization Approach. Advanced Functional Materials, 31, Article ID: 2100164.
https://doi.org/10.1002/adfm.202100164
[27]  Huang, J., Yuan, K. and Chen, Y. (2021) Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 32, Article ID: 2108107.
https://doi.org/10.1002/adfm.202108107
[28]  Zeng, Y., Han, Y., Zhao, Y., Zeng, Y., Yu, M., Liu, Y., et al. (2015) Advanced Ti-Doped Fe2O3@pedot Core/Shell Anode for High-Energy Asymmetric Supercapacitors. Advanced Energy Materials, 5, Article ID: 1402176.
https://doi.org/10.1002/aenm.201402176
[29]  Shen, L., Wang, Y., Lv, H., Chen, S., van Aken, P.A., Wu, X., et al. (2018) Ultrathin Ti2Nb2O9 Nanosheets with Pseu-docapacitive Properties as Superior Anode for Sodium-ion Batteries. Advanced Materials, 30, Article ID: 1804378.
https://doi.org/10.1002/adma.201804378
[30]  He, P., Yan, M., Zhang, G., Sun, R., Chen, L., An, Q., et al. (2017) Layered VS2 Nanosheet-Based Aqueous Zn Ion Battery Cathode. Advanced Energy Materials, 7, Article ID: 1601920.
https://doi.org/10.1002/aenm.201601920
[31]  Fu, Y., Wei, Q., Zhang, G., Wang, X., Zhang, J., Hu, Y., et al. (2018) High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon. Advanced Energy Materials, 8, Article ID: 1801445.
https://doi.org/10.1002/aenm.201801445
[32]  Liang, H., Cao, Z., Ming, F., Zhang, W., Anjum, D.H., Cui, Y., et al. (2019) Aqueous Zinc-Ion Storage in MoS2 by Tuning the Intercalation Energy. Nano Letters, 19, 3199-3206.
https://doi.org/10.1021/acs.nanolett.9b00697
[33]  Wang, X., Wang, L., Zhang, B., Feng, J., Zhang, J., Ou, X., et al. (2021) A Flexible Carbon Nanotube@V2O5 Film as a High-Capacity and Durable Cathode for Zinc Ion Batteries. Journal of Energy Chemistry, 59, 126-133.
https://doi.org/10.1016/j.jechem.2020.10.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133