全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

KP方程新解与τ函数的联系
The Connection between the New Solution of the KP Equation and the τ Function

DOI: 10.12677/pm.2024.146252, PP. 326-330

Keywords: KP方程,柯西矩阵法,τ函数
KP Equation
, Cauchy Matrix Method, τ Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

τ函数在非线性方程的双线性化中发挥重要作用。本文从Sylvester方程出发,结合色散关系用柯西矩阵法先推出KP方程,并求出KP方程的解,其中KP方程的解是矩阵乘积形式。接着建立KP方程的解与τ函数之间的联系,从而建立柯西矩阵法求解与双线性法求解之间的联系。
τ functions play an important role in bilinearization of nonlinear equations. Starting from the Sylvester equation and combining dispersion relationships, this article first derives the KP equation using the Cauchy matrix method, and obtains the solution of the KP equation. The solution of the KP equation is in matrix product form. Then, the relationship between the solution of the KP equation and the function is established, thereby establishing the relationship between Cauchy matrix method and bilinear method solution.

References

[1]  Aktosun, T. and Mee, C.V.D. (2006) Explicit Solutions to the Korteweg-de Vries Equation on the Half Line. Inverse Problems, 22, 2165-2174.
https://doi.org/10.1088/0266-5611/22/6/015
[2]  Fokas, A.S. and Ablowitz, M.J. (1981) Linearization of the Korteweg-de Vries and Painlevé II Equations. Physical Review Letters, 47, 1096-1100.
https://doi.org/10.1103/physrevlett.47.1096
[3]  Nijhoff, F.W., Quispel, G.R.W. and Capel, H.W. (1983) Direct Linearization of Nonlinear Difference-Difference Equations. Physics Letters A, 97, 125-128.
https://doi.org/10.1016/0375-9601(83)90192-5
[4]  Sun, Y., Zhang, D. and Nijhoff, F.W. (2017) The Sylvester Equation and the Elliptic Korteweg-de Vries System. Journal of Mathematical Physics, 58, Article 033504.
https://doi.org/10.1063/1.4977477
[5]  Zhang, D.-J. and Zhao, S.-L. (2013) Solutions to ABS Lattice Equations via Generalized Cauchy Matrix Approach. Studies in Applied Mathematics, 131, 72-103.
https://doi.org/10.1111/sapm.12007
[6]  Xu, D., Zhang, D. and Zhao, S. (2021) The Sylvester Equation and Integrable Equations: I. the Korteweg-de Vries System and Sine-Gordon Equation. Journal of Nonlinear Mathematical Physics, 21, 382-406.
https://doi.org/10.1080/14029251.2014.936759
[7]  Coddington, E.A. and Levinson, N. (1955) Theory of Ordinary Differential Equations. McGraw-Hill.
[8]  Marchenko, V.A. (1988) Nonlinear Equations and Operator Algebras. Physica D: Nonlinear Phenomena, 28, 227.
https://doi.org/10.1016/0167-2789(87)90152-7
[9]  Sylvester, J. (1884) Sur l’equation en matrices px = xq. Comptes rendus de lAcadémie des Sciences, 99, 67-71, 115-116.
[10]  Fu, W. and Nijhoff, F.W. (2022) On a Coupled Kadomtsev-Petviashvili System Associated with an Elliptic Curve. Studies in Applied Mathematics, 149, 1086-1122.
https://doi.org/10.1111/sapm.12529
[11]  Li, X. and Zhang, D. (2022) Elliptic Soliton Solutions: τ Functions, Vertex Operators and Bilinear Identities. Journal of Nonlinear Science, 32, Article No. 70.
https://doi.org/10.1007/s00332-022-09835-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133