|
镉和汞单独及联合胁迫对毛蚶心率的影响
|
Abstract:
动物的生存与发展密切依赖于健康的心脏机能,现有重金属对动物心率影响的研究普遍聚焦于脊椎动物,对双壳类软体动物心脏受重金属影响的毒性作用研究仍显薄弱。为填补此研究空白,本项研究采用5 mg/L及20 mg/L两种浓度的重金属(Cd2+与Hg2+),在48小时的实验周期内,细致考察了这些金属在单独及联合胁迫下对毛蚶心率的具体影响。研究发现,这些金属的存在显著影响了毛蚶的心率:正常情况下毛蚶平均心率为72.0次/分钟,5 mg/L Cd2+与Hg2+单独作用时毛蚶心率降至51.5次/分钟与51.2次/分钟;20 mg/L浓度下,心率进一步降至33.7次/分钟与31.2次/分钟。当Cd2+与Hg2+以5 mg/L和20 mg/L浓度联合作用时,心率分别降至41.3次/分钟与38.2次/分钟。结果表明,随着重金属浓度的增加,毛蚶的平均心率显著下降,特别是在20 mg/L Cd2+的胁迫下,心率降至0。此外,Cd2+与Hg2+在影响心率方面展现出一定的拮抗作用。本研究结果为揭示重金属对毛蚶心脏的毒性机制提供了重要的科学基础。
The survival and development of animals are closely dependent on the healthy functioning of the heart. While existing heavy metals on animal heart rate research mainly focus on vertebrates, studies on the toxic effects of heavy metals on the heart of bivalve mollusks remain scarce. To address this research gap, a preliminary study was designed to investigate the specific effects of cadmium (Cd2+) and mercury (Hg2+) at concentrations of 5 mg/L and 20 mg/L over a 48-hour experimental period on the heart rate of S. subcrenata under single and combined stress in detail. The study revealed that the presence of these metals affected the S. subcrenata’s heart rate: under normal conditions, the average S. subcrenata heart rate was 72.0 beats per minute, which decreased to 51.5 and 51.2 beats per minute when exposed to 5 mg/L of Cd2+ and Hg2+ individually, and further dropped to 33.7 and 31.2 beats per minute at a concentration of 20 mg/L. When Cd2+ and Hg2+ acted together at concentrations of 5 mg/L and 20 mg/L, the S. subcrenata heart rate decreased to 41.3 and 38.2 beats per minute, respectively. The results indicate that with increasing heavy metal concentrations, the average heart rate of scallops significantly decreased, especially dropping to 0 under the stress of 20 mg/L of Cd2+. Additionally, Cd2+ and Hg2+ exhibited a certain antagonistic affecting heart rate. This study provides an important scientific basis for understanding the toxic mechanisms of heavy metals on the heart of S. subcrenata.
[1] | 陈辰. 毛蚶群体遗传学研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2016. |
[2] | 王庆志, 张明, 滕炜鸣, 等. 毛蚶养殖生物学研究进展[J]. 大连海洋大学学报, 2015, 30(4): 437-443. |
[3] | Sun, C., Wei, Q., Ma, L., Li, L., Wu, G. and Pan, L. (2017) Trace Metal Pollution and Carbon and Nitrogen Isotope Tracing through the Yongdingxin River Estuary in Bohai Bay, Northern China. Marine Pollution Bulletin, 115, 451-458. https://doi.org/10.1016/j.marpolbul.2016.10.066 |
[4] | Wu, G., Shang, J., Pan, L. and Wang, Z. (2014) Heavy Metals in Surface Sediments from Nine Estuaries along the Coast of Bohai Bay, Northern China. Marine Pollution Bulletin, 82, 194-200. https://doi.org/10.1016/j.marpolbul.2014.02.033 |
[5] | 慕建东. 渤海重要渔业水域生态环境质量状况评价[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2009. |
[6] | 张明强. 渤海湾海河大沽口表层沉积物及其近海海洋生物体内重金属的研究[D]: [硕士学位论文]. 天津: 天津师范大学, 2012. |
[7] | 龚倩. 海水滩涂贝类中重金属镉的检测及富集规律的研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2012. |
[8] | Boening, D.W. (1999) An Evaluation of Bivalves as Biomonitors of Heavy Metals Pollution in Marine Waters. Environmental Monitoring and Assessment, 55, 459-470. https://doi.org/10.1023/a:1005995217901 |
[9] | 马建新, 张宜奎, 宋秀凯, 等. 重金属胁迫对海洋贝类毒性研究进展[J]. 海洋湖沼通报, 2011(2): 35-42. |
[10] | 江璐. 我国海洋船舶污染现状及防治措施[J]. 化工管理, 2013(2): 46-47. |
[11] | Nicholson, S. and Lam, P.K.S. (2005) Pollution Monitoring in Southeast Asia Using Biomarkers in the Mytilid Mussel Perna viridis (Mytilidae: Bivalvia). Environment International, 31, 121-132. https://doi.org/10.1016/j.envint.2004.05.007 |
[12] | Xing, Q., Zhang, L., Li, Y., Zhu, X., Li, Y., Guo, H., et al. (2019) Development of Novel Cardiac Indices and Assessment of Factors Affecting Cardiac Activity in a Bivalve Mollusc Chlamys farreri. Frontiers in Physiology, 10, Article No. 293. https://doi.org/10.3389/fphys.2019.00293 |
[13] | Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, T., et al. (2017) Blue Mussels (Mytilus edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Marine Environmental Research, 130, 338-365. https://doi.org/10.1016/j.marenvres.2017.07.024 |
[14] | Zhao, X., Wang, S., Li, X., Liu, H. and Xu, S. (2021) Cadmium Exposure Induces TNF-α-Mediated Necroptosis via FPR2/TGF-β/NF-κB Pathway in Swine Myocardium. Toxicology, 453, Article ID: 152733. https://doi.org/10.1016/j.tox.2021.152733 |
[15] | Limaye, D.A. and Shaikh, Z.A. (1999) Cytotoxicity of Cadmium and Characteristics of Its Transport in Cardiomyocytes. Toxicology and Applied Pharmacology, 154, 59-66. https://doi.org/10.1006/taap.1998.8575 |
[16] | Lei, W., Wang, L., Liu, D., Xu, T. and Luo, J. (2011) Histopathological and Biochemical Alternations of the Heart Induced by Acute Cadmium Exposure in the Freshwater Crab Sinopotamon yangtsekiense. Chemosphere, 84, 689-694. https://doi.org/10.1016/j.chemosphere.2011.03.023 |
[17] | Ferramola, M.L., Antón, R.I., Anzulovich, A.C. and Giménez, M.S. (2011) Myocardial Oxidative Stress Following Sub-Chronic and Chronic Oral Cadmium Exposure in Rats. Environmental Toxicology and Pharmacology, 32, 17-26. https://doi.org/10.1016/j.etap.2011.03.002 |
[18] | Li, X., Zheng, Y., Zhang, G., Wang, R., Jiang, J. and Zhao, H. (2021) Cadmium Induced Cardiac Toxicology in Developing Japanese Quail (Coturnix japonica): Histopathological Damages, Oxidative Stress and Myocardial Muscle Fiber Formation Disorder. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 250, Article ID: 109168. https://doi.org/10.1016/j.cbpc.2021.109168 |
[19] | 王晓宇, 王清, 杨红生. 镉和汞两种重金属离子对四角蛤蜊的急性毒性[J]. 海洋科学, 2009(12): 24-29. |
[20] | 魏爱泓, 矫新明, 毛成责, 等. 重金属汞对海洋底栖动物毛蚶和紫贻贝毒性效应研究[J]. 生态毒理学报, 2018, 13(6): 352-359. |
[21] | 赵艳芳, 吴继法, 翟毓秀, 等. 镉胁迫对不同镉富集能力海水养殖贝类抗氧化能力的影响——以扇贝和菲律宾蛤仔为例[J]. 生态毒理学报, 2014, 9(2): 224-232. |
[22] | Handy, R.D. and Depledge, M.H. (1999) Physiological Responses: Their Measurement and Use as Environmental Biomarkers in Ecotoxicology. Ecotoxicology, 8, 329-349. https://doi.org/10.1023/a:1008930404461 |
[23] | De Pirro, M., Santini, G. and Chelazzi, G. (1999) Cardiac Responses to Salinity Variations in Two Differently Zoned Mediterranean Limpets. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 169, 501-506. https://doi.org/10.1007/s003600050248 |
[24] | Santini, G., Williams, G.A. and Chelazzi, G. (2000) Assessment of Factors Affecting Heart Rate of the Limpet Patella vulgata on the Natural Shore. Marine Biology, 137, 291-296. https://doi.org/10.1007/s002270000339 |
[25] | Dong, Y. and Williams, G.A. (2011) Variations in Cardiac Performance and Heat Shock Protein Expression to Thermal Stress in Two Differently Zoned Limpets on a Tropical Rocky Shore. Marine Biology, 158, 1223-1231. https://doi.org/10.1007/s00227-011-1642-6 |
[26] | Widdows, J. (1973) Effect of Temperature and Food on the Heart Beat, Ventilation Rate and Oxygen Uptake of Mytilus edulis. Marine Biology, 20, 269-276. https://doi.org/10.1007/bf00354270 |
[27] | Bakhmet, I.N., Komendantov, A.J. and Smurov, A.O. (2011) Effect of Salinity Change on Cardiac Activity in Hiatella arctica and Modiolus modiolus, in the White Sea. Polar Biology, 35, 143-148. https://doi.org/10.1007/s00300-011-1033-y |
[28] | 张雯雯. 菲律宾蛤仔对急性海水酸化和重金属(Cu和Cd)胁迫的生理响应[J]. 渔业科学进展, 2021, 42(5): 97-104. |
[29] | Chen, N., Luo, X., Gu, Y., Han, G., Dong, Y., You, W., et al. (2016) Assessment of the Thermal Tolerance of Abalone Based on Cardiac Performance in Haliotis discus hannai, H. gigantea and Their Interspecific Hybrid. Aquaculture, 465, 258-264. https://doi.org/10.1016/j.aquaculture.2016.09.004 |
[30] | Curtis, T.M., Williamson, R. and Depledge, M.H. (2000) Simultaneous, Long-Term Monitoring of Valve and Cardiac Activity in the Blue Mussel Mytilus edulis Exposed to Copper. Marine Biology, 136, 837-846. https://doi.org/10.1007/s002270000297 |
[31] | Duan, J., Yu, Y., Li, Y., Li, Y., Liu, H., Jing, L., et al. (2015) Low-Dose Exposure of Silica Nanoparticles Induces Cardiac Dysfunction via Neutrophil-Mediated Inflammation and Cardiac Contraction in Zebrafish Embryos. Nanotoxicology, 10, 575-585. https://doi.org/10.3109/17435390.2015.1102981 |
[32] | Depledge, M.H. and Andersen, B.B. (1990) A Computer-Aided Physiological Monitoring System for Continuous, Long-Term Recording of Cardiac Activity in Selected Invertebrates. Comparative Biochemistry and Physiology Part A: Physiology, 96, 473-477. https://doi.org/10.1016/0300-9629(90)90664-e |
[33] | Monteiro, D.A., Taylor, E.W., Rantin, F.T. and Kalinin, A.L. (2017) Impact of Waterborne and Trophic Mercury Exposures on Cardiac Function of Two Ecologically Distinct Neotropical Freshwater Fish Brycon amazonicus and Hoplias malabaricus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 201, 26-34. https://doi.org/10.1016/j.cbpc.2017.09.004 |
[34] | Bakhmet, I.N., Kantserova, N.P., Lysenko, L.A. and Nemova, N.N. (2012) Effect of Copper and Cadmium Ions on Heart Function and Calpain Activity in Blue Mussel Mytilus edulis. Journal of Environmental Science and Health, Part A, 47, 1528-1535. https://doi.org/10.1080/10934529.2012.680393 |
[35] | Suter, G. (2007) Freshwater Bivalve Ecotoxicology. Integrated Environmental Assessment and Management, 3, 568-569. https://doi.org/10.1002/ieam.5630030418 |
[36] | Li, Y., Yang, H., Liu, N., Luo, J., Wang, Q. and Wang, L. (2015) Cadmium Accumulation and Metallothionein Biosynthesis in Cadmium-Treated Freshwater Mussel Anodonta woodiana. PLOS ONE, 10, e0117037. https://doi.org/10.1371/journal.pone.0117037 |
[37] | Moreira, C. (2003) Effects of Mercury on Myosin Atpase in the Ventricular Myocardium of the Rat. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135, 269-275. https://doi.org/10.1016/s1532-0456(03)00110-8 |
[38] | Vornanen, M., Shiels, H.A. and Farrell, A.P. (2002) Plasticity of Excitation-Contraction Coupling in Fish Cardiac Myocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132, 827-846. https://doi.org/10.1016/s1095-6433(02)00051-x |
[39] | Nusier, M., Shah, A. and Dhalla, N. (2021) Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiological Research, 70, S443-S470. https://doi.org/10.33549/physiolres.934805 |
[40] | Arbi, S., Bester, M.J., Pretorius, L. and Oberholzer, H.M. (2021) Adverse Cardiovascular Effects of Exposure to Cadmium and Mercury Alone and in Combination on the Cardiac Tissue and Aorta of Sprague-Dawley Rats. Journal of Environmental Science and Health, Part A, 56, 609-624. https://doi.org/10.1080/10934529.2021.1899534 |
[41] | 王来, 姚素梅, 王强. 镉的心脏毒性[J]. 环境与职业医学, 2006(5): 436-439. |