|
非符号数量系统的表征机制
|
Abstract:
非符号数量系统是人类数量认知的基础。现有研究对非符号数量系统和符号数量系统的关系问题存在分歧,有人认为非符号数量系统是符号数量系统的基础,而另一些认为符号数量系统对非符号数量系统有促进作用。现有研究忽视了非符号数量系统表征机制的影响,因此要说明两者之间的关系,还需重点关注非符号数量系统表征方式的概念和表征机制的作用,以更全面地理解这一领域的研究。
The non-symbolic number system is fundamental to human numerical cognition. Current research on the relationship between the non-symbolic and symbolic number systems is divided. Some believe that the non-symbolic number system underlies the symbolic number system, while others argue that the symbolic number system enhances the non-symbolic one. Existing studies have overlooked the impact of representation mechanisms of the non-symbolic number system. To elucidate the relationship between the two, it is crucial to focus on the concepts of representation modes and the role of representation mechanisms in the non-symbolic number system. This will allow for a more comprehensive understanding of research in this field.
[1] | 蔡之升(2013). 数量表征与注意机制关系的研究. 硕士学位论文, 昆明: 云南师范大学. |
[2] | 尹月阳(2019). 符号数量系统与近似数量系统之间的双向映射机制. 博士学位论文, 长春: 吉林大学. |
[3] | Agrillo, C., Petrazzini, M. E. M., & Bisazza, A. (2016). Number vs. Continuousquantities in Lower Vertebrates. In A. Henik, (Ed.), Continuous Issues in Numerical Cognition (pp. 149-174). Academic Press. https://doi.org/10.1016/B978-0-12-801637-4.00007-X |
[4] | Anobile, G., Turi, M., Cicchini, G. M., & Burr, D. C. (2012). The Effects of Cross-Sensory Attentional Demand on Subitizing and on Mapping Number Onto Space. Vision Research, 74, 102-109. https://doi.org/10.1016/j.visres.2012.06.005 |
[5] | Cantlon, J. F. (2012). Math, Monkeys, and the Developing Brain. Proceedings of the National Academy of Sciences of the United States of America, 109, 10725-10732. https://doi.org/10.1073/pnas.1201893109 |
[6] | Cantlon, J. F., Cordes, S., Libertus, M. E., & Brannon, E. M. (2009). Comment on “Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures“. Science, 323, 38-38. https://doi.org/10.1126/science.1164773 |
[7] | De Smedt, B., No?l, M., Gilmore, C., & Ansari, D. (2013). How Do Symbolic and Non-Symbolic Numerical Magnitude Processing Skills Relate to Individual Differences in Children’s Mathematical Skills? A Review of Evidence from Brain and Behavior. Trends in Neuroscience and Education, 2, 48-55. https://doi.org/10.1016/j.tine.2013.06.001 |
[8] | Dietrich, J. F., Huber, S., & Nuerk, H. (2015). Methodological Aspects to Be Considered When Measuring the Approximate Number System (ANS)—A Research Review. Frontiers in Psychology, 6, Article 295. https://doi.org/10.3389/fpsyg.2015.00295 |
[9] | Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core Systems of Number. Trends in Cognitive Sciences, 8, 307-314. https://doi.org/10.1016/j.tics.2004.05.002 |
[10] | Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking Multiple Objects Is Limited Only by Object Spacing, Not by Speed, Time, or Capacity. Psychological Science, 21, 920-925. https://doi.org/10.1177/0956797610373935 |
[11] | Gallistel, C. R., & Gelman, R. (2000). Non-Verbal Numerical Cognition: From Reals to Integers. Trends in Cognitive Sciences, 4, 59-65. https://doi.org/10.1016/s1364-6613(99)01424-2 |
[12] | Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2007). Symbolic Arithmetic Knowledge without Instruction. Nature, 447, 589-591. https://doi.org/10.1038/nature05850 |
[13] | Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J., & Zhang, S. (2009). Number-Based Visual Generalisation in the Honeybee. PLOS ONE, 4, e4263. https://doi.org/10.1371/journal.pone.0004263 |
[14] | Halberda, J., & Feigenson, L. (2008). Developmental Change in the Acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-Year-Olds and Adults. Developmental Psychology, 44, 1457-1465. https://doi.org/10.1037/a0012682 |
[15] | Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number Sense across the Lifespan as Revealed by a Massive Internet-Based Sample. Proceedings of the National Academy of Sciences of the United States of America, 109, 11116-11120. https://doi.org/10.1073/pnas.1200196109 |
[16] | Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature, 455, 665-668. https://doi.org/10.1038/nature07246 |
[17] | Holloway, I. D., & Ansari, D. (2009). Mapping Numerical Magnitudes onto Symbols: The Numerical Distance Effect and Individual Differences in Children’s Mathematics Achievement. Journal of Experimental Child Psychology, 103, 17-29. https://doi.org/10.1016/j.jecp.2008.04.001 |
[18] | Hyde, D. C. (2011). Two Systems of Non-Symbolic Numerical Cognition. Frontiers in Human Neuroscience, 5, Article 150. https://doi.org/10.3389/fnhum.2011.00150 |
[19] | Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief Non-Symbolic, Approximate Number Practice Enhances Subsequent Exact Symbolic Arithmetic in Children. Cognition, 131, 92-107. https://doi.org/10.1016/j.cognition.2013.12.007 |
[20] | Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-Verbal Number Acuity Correlates with Symbolic Mathematics Achievement: But Only in Children. Psychonomic Bulletin & Review, 18, 1222-1229. https://doi.org/10.3758/s13423-011-0154-1 |
[21] | Keller, L., & Libertus, M. (2015). Inhibitory Control May Not Explain the Link between Approximation and Math Abilities in Kindergarteners from Middle Class Families. Frontiers in Psychology, 6, Article 685. https://doi.org/10.3389/fpsyg.2015.00685 |
[22] | Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2013). Early Numerical Development and the Role of Non-Symbolic and Symbolic Skills. Learning and Instruction, 25, 95-103. https://doi.org/10.1016/j.learninstruc.2012.12.001 |
[23] | Laski, E. V., & Siegler, R. S. (2007). Is 27 a Big Number? Correlational and Causal Connections among Numerical Categorization, Number Line Estimation, and Numerical Magnitude Comparison. Child Development, 78, 1723-1743. https://doi.org/10.1111/j.1467-8624.2007.01087.x |
[24] | Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool Acuity of the Approximate Number System Correlates with School Math Ability. Developmental Science, 14, 1292-1300. https://doi.org/10.1111/j.1467-7687.2011.01080.x |
[25] | Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). Understanding the Mapping between Numerical Approximation and Number Words: Evidence from Williams Syndrome and Typical Development. Developmental Science, 17, 905-919. https://doi.org/10.1111/desc.12154 |
[26] | Lyons, I. M., & Beilock, S. L. (2011). Numerical Ordering Ability Mediates the Relation between Number-Sense and Arithmetic Competence. Cognition, 121, 256-261. https://doi.org/10.1016/j.cognition.2011.07.009 |
[27] | Lyons, I. M., Ansari, D., & Beilock, S. L. (2014). Qualitatively Different Coding of Symbolic and Nonsymbolic Numbers in the Human Brain. Human Brain Mapping, 36, 475-488. https://doi.org/10.1002/hbm.22641 |
[28] | Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired Acuity of the Approximate Number System Underlies Mathematical Learning Disability (Dyscalculia). Child Development, 82, 1224-1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x |
[29] | Mock, J., Huber, S., Bloechle, J., Dietrich, J. F., Bahnmueller, J., Rennig, J. et al. (2018). Magnitude Processing of Symbolic and Non-Symbolic Proportions: An fMRI Study. Behavioral and Brain Functions, 14, Article 9. https://doi.org/10.1186/s12993-018-0141-z |
[30] | Moeller, K., Willmes, K., & Klein, E. (2015). A Review on Functional and Structural Brain Connectivity in Numerical Cognition. Frontiers in Human Neuroscience, 9, Article 227. https://doi.org/10.3389/fnhum.2015.00227 |
[31] | Mou, Y., & Van Marle, K. (2014). Two Core Systems of Numerical Representation in Infants. Developmental Review, 34, 1-25. https://doi.org/10.1016/j.dr.2013.11.001 |
[32] | Nieder, A. (2016). The Neuronal Code for Number. Nature Reviews Neuroscience, 17, 366-382. https://doi.org/10.1038/nrn.2016.40 |
[33] | Nieder, A., & Dehaene, S. (2009). Representation of Number in the Brain. Annual Review of Neuroscience, 32, 185-208. https://doi.org/10.1146/annurev.neuro.051508.135550 |
[34] | Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental Change in the Acuity of Approximate Number and Area Representations. Developmental Psychology, 49, 1103-1112. https://doi.org/10.1037/a0029472 |
[35] | Park, J., & Brannon, E. M. (2013). Training the Approximate Number System Improves Math Proficiency. Psychological Science, 24, 2013-2019. https://doi.org/10.1177/0956797613482944 |
[36] | Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2005). Are Numerical Impairments Syndrome Specific? Evidence from Williams Syndrome and Down’s Syndrome. Journal of Child Psychology and Psychiatry, 47, 190-204. https://doi.org/10.1111/j.1469-7610.2005.01460.x |
[37] | Peake, C., & Rodríguez, C. (2020). Bidirectional Relation of Non-Symbolic and Symbolic Numerical Systems in First Year of Kindergarten: The Mediating Role of Ordinality during Number Learning. https://doi.org/10.31234/osf.io/qwhzm |
[38] | Piazza, J. R., Charles, S. T., Sliwinski, M. J., Mogle, J., & Almeida, D. M. (2012). Affective Reactivity to Daily Stressors and Long-Term Risk of Reporting a Chronic Physical Health Condition. Annals of Behavioral Medicine, 45, 110-120. https://doi.org/10.1007/s12160-012-9423-0 |
[39] | Piazza, M., & Izard, V. (2009). How Humans Count: Numerosity and the Parietal Cortex. The Neuroscientist, 15, 261-273. https://doi.org/10.1177/1073858409333073 |
[40] | Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking Multiple Independent Targets: Evidence for a Parallel Tracking Mechanism. Spatial Vision, 3, 179-197. https://doi.org/10.1163/156856888x00122 |
[41] | Revkin, S. K., Piazza, M., Izard, V., Zamarian, L., Karner, E., & Delazer, M. (2008). Verbal Numerosity Estimation Deficit in the Context of Spared Semantic Representation of Numbers: A Neuropsychological Study of a Patient with Frontal Lesions. Neuropsychologia, 46, 2463-2475. https://doi.org/10.1016/j.neuropsychologia.2008.04.011 |
[42] | Reynvoet, B., & Sasanguie, D. (2016). The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol-Symbol Associations. Frontiers in Psychology, 7, Article 1581. https://doi.org/10.3389/fpsyg.2016.01581 |
[43] | Rubinsten, O., Korem, N., Levin, N., & Furman, T. (2020). Frequency-based Dissociation of Symbolic and Nonsymbolic Numerical Processing during Numerical Comparison. Journal of Cognitive Neuroscience, 32, 762-782. https://doi.org/10.1162/jocn_a_01550 |
[44] | Rugani, R., Vallortigara, G., & Regolin, L. (2014). From Small to Large: Numerical Discrimination by Young Domestic Chicks (Gallus gallus). Journal of Comparative Psychology, 128, 163-171. https://doi.org/10.1037/a0034513 |
[45] | Sasanguie, D., & Reynvoet, B. (2014). The Relation between Symbolic Number Processing and Math Achievement: Opening the Black Box. In Annual Meeting of the Psychonomic Society, Long Beach, California, 20 November-23 November 2014. |
[46] | Sasanguie, D., Lyons, I. M., De Smedt, B., & Reynvoet, B. (2017). Unpacking Symbolic Number Comparison and Its Relation with Arithmetic in Adults. Cognition, 165, 26-38. https://doi.org/10.1016/j.cognition.2017.04.007 |
[47] | Schneider, M., & Preckel, F. (2017). Variables Associated with Achievement in Higher Education: A Systematic Review of Meta-Analyses. Psychological Bulletin, 143, 565-600. https://doi.org/10.1037/bul0000098 |
[48] | Starkey, G. S., & McCandliss, B. D. (2014). The Emergence of “Groupitizing” in Children’s Numerical Cognition. Journal of Experimental Child Psychology, 126, 120-137. https://doi.org/10.1016/j.jecp.2014.03.006 |
[49] | Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Infants Show Ratio‐dependent Number Discrimination Regardless of Set Size. Infancy, 18, 927-941. https://doi.org/10.1111/infa.12008 |
[50] | Stoianov, I., & Zorzi, M. (2012). Emergence of a ‘Visual Number Sense’ in Hierarchical Generative Models. Nature Neuroscience, 15, 194-196. https://doi.org/10.1038/nn.2996 |
[51] | Van Marle, K., Chu, F. W., Mou, Y., Seok, J. H., Rouder, J., & Geary, D. C. (2016). Attaching Meaning to the Number Words: Contributions of the Object Tracking and Approximate Number Systems. Developmental Science, 21, e12495. https://doi.org/10.1111/desc.12495 |
[52] | Wood, J. N., Hauser, M. D., Glynn, D. D., & Barner, D. (2008). Free-Ranging Rhesus Monkeys Spontaneously Individuate and Enumerate Small Numbers of Non-Solid Portions. Cognition, 106, 207-221. |