全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

探索HPM与PME的结合之桥:等比数列前n项和的教学设计
Exploring the Bridge of Combining HPM and PME: Teaching Design for the First n Sum of Proportional Sequence

DOI: 10.12677/ces.2024.126403, PP. 387-395

Keywords: HPM,PME,等比数列
HPM
, PME, Proportional Sequence

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对HPM与PME相结合的可行性与必要性分析的基础上,以“等比数列前n项和”为例,对该理论在等比数列求和教学过程中的应用进行了分析,并开发了相应的教学片段设计。该教学片段通过数学史导入新课,利用五种推导方法得到等比数列前n项和公式,并从PME视角分析HPM对学习该内容的作用及机理,使学生体会数学家们当时的思维方式并收获数学知识。该教学方法在理解和掌握知识的同时有效培养学生的核心素养,为教师提供了一种新的教学方法和理念,以期改进等比数列的教学设计从而提高课堂教学质量与效果。
Based on the feasibility and necessity analysis of the combination of HPM and PME, taking “the first n terms and formulas of proportional sequence” as an example, the application of this theory in the teaching process of proportional sequence summation was analyzed, and a corresponding teaching segment design was developed. This teaching segment was introduced into a new lesson through mathematical history, and five deduction methods were used to obtain the first n terms and formulas of proportional sequence. The role and mechanism of HPM in learning this content were analyzed from the perspective of PME, enabling students to experience the thinking patterns of mathematicians at that time and gain mathematical knowledge. This teaching method effectively cultivates students’ core competencies while understanding and mastering knowledge, providing teachers with a new teaching method and concept to improve the teaching design of proportional sequences and enhance the quality and effectiveness of classroom teaching.

References

[1]  中华人民共和国教育部. 普通高中数学课程标准(2017年版2020年修订) [M]. 北京: 人民教育出版社, 2020.
[2]  汪晓勤. HPM: 数学史与数学教育[M]. 北京: 科学出版社, 2017.
[3]  王海青. 数学史视角下“正弦定理”和“余弦定理”的教学设想[J]. 教学与管理, 2017(28): 67-69.
[4]  李士錡. PME: 数学教育心理[M]. 上海: 华东师范大学出版社, 2001: 6.
[5]  喻平, 徐文彬. PME关于数学教师专业发展的研究及启示[J]. 数学通报, 2012, 51(5): 6-11.
[6]  王雪, 李中平. PME视角下的数学概念教学设计框架[J]. 中学数学, 2023(17): 18-20.
[7]  冯晓华, 袁敏. 关于HPM和PME结合的研究[J]. 西北大学学报(自然科学版), 2005(5): 661-664.
[8]  徐章韬. 架HPM与PME沟通之桥[J]. 数学通报, 2017, 56(3): 1-3, 10.
[9]  李玲, 徐章韬. 正态分布的教学设计: 从历史中寻找学生认知生长点[J]. 数学教育学报, 2023, 32(2): 12-17.
[10]  柴有茂. 核心素养引领下的“等比数列”教学设计[J]. 当代教育与文化. 2018, 10(3): 85-88.
[11]  吴现荣, 宋军. HPM视角下的等比数列前n项和公式教学[J]. 数学通报, 2016, 55(7): 28-31+34.
[12]  陈德燕. 基于情境、问题导向的探究体验式课堂教学实践——以“等比数列的前n项和”教学为例[J]. 数学通报, 2020, 59(4): 35-38+42.
[13]  汪晓勤. 纸草书上的数列问题[J]. 数学教学, 2010(1): 29-31.
[14]  汪晓勤. 从古希腊几何难题引出的数学问题[J]. 数学通报, 2021, 60(3): 8-12+17.
[15]  张勤, 李德安. 数学史融入中学数学教学初探——以“等比数列求和公式推导”为例[J]. 数学通讯, 2016(4): 23-25.
[16]  蔡东山, 翟鑫婷, 沈中宇. HPM视角下的等比数列求和公式教学[J]. 数学教学, 2019(9): 8-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133