全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国航天运载器舱段铆接技术发展现状及发展趋势研究
Research on the Development Status and Development Trend of Riveting Technology of China Space Launch Vehicle Segment

DOI: 10.12677/jast.2024.122015, PP. 132-144

Keywords: 航天运载器,铆接技术,发展现状,发展趋势,研究
Space Launch Vehicle
, Riveting Technology, Development Status, Development Trend, Research

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国航天运载器舱段铆接技术经过近十几年的飞速发展,现与国外先进航空、航天舱段铆接技术的差距不断缩小,但一些关键技术指标如铆接技术的工艺性、系统性、稳定性、柔性方面仍存在着较大差距。本文通过对中国航天运载器舱段铆接技术的发展现状及发展趋势的研究,对比了国内、外航天技术的差距及未来发展的技术路线,为中国航天舱段铆接行业的发展提供有益借鉴。
After the rapid development of China’s space launch vehicle segment riveting technology in the past decade, the gap between China’s space launch vehicle segment riveting technology and foreign advanced aviation and aerospace riveting technology has been greatly reduced, but there are still large gaps and barriers in some key technical indicators such as manufacturability, systemization, stability and flexibility of riveting technology. Through the analysis of the development status and development trend of China’s space launch vehicle segment riveting technology, this paper comprehensively analyzes the gap between domestic and foreign space technology and the technical route for future development, providing a reference for the development of China’s space segment riveting industry.

References

[1]  郭文彧. 中美商业航天发展脉络对比分析[J]. 航天工业管理, 2022(10): 37-43.
[2]  孙来燕. 中国航天的发展战略和重点领域[J]. 中国工程科学, 2016(10): 7-12.
[3]  喻龙. 飞机自动钻铆技术研究现状及其关键技术[J]. 航空制造技术, 2017(9): 16-20.
[4]  Barton, E. (2014) G12 Automatic Fastening Launch Vehicle. SAE Technical Papers, 4, 15-21.
https://doi.org/10.4271/2014-01-2263
[5]  楼阿莉. 国内外自动钻铆技术的发展现状及应用[J]. 航空制造技术, 2015(6): 50-52.
[6]  Dillhoefer, T. (2017) All Electric Fastening System. SAE Technical Papers, 4, 24-29.
[7]  Mehlenhoff, T. (2009) Automated Fastening of Aircraft Cargo Door Structures with Standard Articulating Robot System. SAE Technical Papers.
https://doi.org/10.4271/2009-01-3157
[8]  于渊. 锥体壳段壁板自动钻铆技术研究及应用[J]. 航空精密制造技术, 2021(1): 40-43.
[9]  杜兆才. 机器人钻铆系统研究现状及发展趋势[J]. 航空制造技术, 2020(4): 26-31.
[10]  费军. 自动钻铆技术的发展现状及应用分析[J]. 航空制造技术, 2011(6): 42-44.
[11]  刘连喜. 无头铆钉自动钻铆工艺试验研究[J]. 西北工业大学学报, 2013, 31(1): 77-82.
[12]  邓峰. MPAC自动钻铆机[J]. 航空制造技术, 2010(6): 26-29.
[13]  王珉. 飞机数字化自动钻铆系统及其关键技术[J]. 航空制造技术, 2013(1/2): 80-83.
[14]  潘伟涛. 钢铝异种材料自冲铆接工艺研究与参数优化[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2019.
[15]  何冠中. 铝钢异种金属平模自冲摩擦铆焊工艺研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2023.
[16]  吴小丹. 铝钢异种金属SPR铆接工艺及裂纹形成机理研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2016.
[17]  DeVlieg, R. (2010) Applied Accurate Robotic Drilling for Aircraft Fuselage. International Journal of Aerospace, 3, 180-186.
https://doi.org/10.4271/2010-01-1836
[18]  杨保华. 中国商业航天的实践与探索[J]. 中国航天, 2018(1): 6-10.
[19]  毕海亮. 2018年商业发射服务产业趋势[J]. 中国航天, 2019(7): 10-14.
[20]  DeVlieg, R. (2009) Robotic Trailing Edge Flap Drilling System. SAE Technical Paper.
https://doi.org/10.4271/2009-01-3244
[21]  DeVlieg, R. (2011) High-Accuracy Robotic Drilling/Milling of 737 Inboard Flaps. SAE International Journal of Aerospace, 4, 73-79.
https://doi.org/10.4271/2011-01-2733
[22]  张宏剑. 运载火箭机构技术发展研究[J]. 航空精密制造技术, 2023(6): 1-9.
[23]  Smith J. (2013) Integrated Hole and Countersink Inspection of Aircraft Components. SAE Technical Paper.
https://doi.org/10.4271/2013-01-2147
[24]  DeVlieg, R. (2008) One-Up Assembly with Robots. SAE Technical Paper.
https://doi.org/10.4271/2008-01-2297
[25]  范新中, 肖耘. 飞船整流罩纵向解锁机构设计与动力学[J]. 宇航学报, 2019, 19(5): 87-93.
[26]  Olsson, T. (2010) Cost-Efficient Drilling Using Industrial Robots with High-Bandwidth Force Feedback. Robotics and Manufacturing, 26, 24-38.
https://doi.org/10.1016/j.rcim.2009.01.002
[27]  孙为钢. 中国航天商业发射服务的实践与展望[J]. 中国航天, 2017(7): 6-9.
[28]  王黎明. 数字化自动钻铆技术在飞机制造中的应用[J]. 航空制造技术, 2008, 51(11): 42-45.
[29]  王健. 机器人钻铆系统研究现状及发展趋势[J]. 航空制造技术, 2015, 58(4): 26-31.
[30]  Logemann, T. (2016) Mobile Robot Assembly Cell (RACe) for Drilling and Fastening. SAE Technical Paper.
https://doi.org/10.4271/2016-01-2078
[31]  卜泳. 飞机结构件的自动化精密制孔技术[J]. 航空制造技术, 2009, 52(24): 61-64.
[32]  Mueller-Hummel, P. (2012) New Concept on Drills up to 5/8’’ (16 mm) for One Shot Robot Application. SAE Technical Paper.
https://doi.org/10.4271/2012-01-1865
[33]  Atkinson, J. (2007) Robotic Drilling System for 737 Aileron. SAE Technical Paper.
https://doi.org/10.4271/2007-01-3821
[34]  曾广商. 我国载人运载火箭伺服机构技术发展分析[J]. 载人航天, 2013, 19(4): 3-6.
[35]  贾丰胜. 航天产品质量问题数据应用研究[J]. 质量与可靠性, 2022(6): 2-9.
[36]  Barton, E. (2017) Drivmatic Automatic Fastening System with Single Robot Positioner. SAE Technical Paper.
https://doi.org/10.4271/2017-01-2078
[37]  Waurzyniak, P. (2015) Aerospace Automation Stretches Beyond Drilling. Manufacturing Engineering, 154, 73-86.
[38]  Frommknecht, A. (2017) Multi-Sensor Measurement System for Robotic Drilling. Robotics, 47, 4-10.
https://doi.org/10.1016/j.rcim.2017.01.002
[39]  周源泉. 中国长征系列运载火箭的可靠性分析[J]. 导弹与航天运载技术, 2002(2): 2-4.
[40]  王小军. 运载火箭发展与结构机构动力学问题[J]. 载人航天, 2016, 20(4): 13-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133