|
免疫检查点抑制剂在肺癌治疗中的潜力与挑战
|
Abstract:
肺癌是全球最常见的癌症,其发病率逐渐上升,而且肺癌的5年存活率远低于其他癌症。虽然肺癌的治疗手段多种多样,但是肺癌早期检测困难,高异质性、强耐药性、易转移和复发给肺癌的治疗带来了许多挑战。免疫检查点抑制剂在肿瘤治疗中已得到广泛应用,已经成功应用在临床研究中。本研究对3种常见的免疫检查点,细胞毒性T细胞相关抗原4 (Cytotoxic T-Lymphocyte Antigen 4, CTLA-4),程序性死亡受体1 (Programmed Death-1, PD-1)和程序性死亡受体配体1 (Programmed Death-Ligand 1, PD-L1)在肺癌上研究进行了综述,PD-L1可以作为肺癌治疗过程的潜在生物标志物。本研究通过系统综述这些免疫检查点在肺癌中的作用,帮助明确其在治疗中的有效性和潜力。这不仅为临床医生提供了更全面的治疗策略选择,也为未来的研究方向提供了科学依据。
Lung cancer is the most common cancer worldwide, its incidence is gradually increasing, and the 5-year survival rate of lung cancer is much lower than that of other cancers. Although there are various treatments for lung cancer, the difficulty of early detection of lung cancer, high heterogeneity, strong drug resistance, and the ease of metastasis and recurrence pose many challenges to the treatment of lung cancer. Immune checkpoint inhibitors have been widely used in tumour therapy and have been successfully applied in clinical studies. In this study, we investigated three common immune checkpoints, Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), Programmed Death-1 (PD-1), and Programmed Death-Ligand 1 (PD-L1) studies on lung cancer were reviewed, and PD-L1 can be used as a potential biomarker for the therapeutic process of lung cancer. This study helps to clarify the effectiveness and potential of these immune checkpoints in therapy by systematically reviewing their role in lung cancer. This not only provides clinicians with a more comprehensive choice of treatment strategies, but also provides a scientific basis for future research directions.
[1] | Minna, J.D., Roth, J.A. and Gazdar, A.F. (2002) Focus on Lung Cancer. Cancer Cell, 1, 49-52. https://doi.org/10.1016/S1535-6108(02)00027-2 |
[2] | Travis, W.D. (2020) Lung Cancer Pathology: Current Concepts. Clinics in Chest Medicine, 41, 67-85. https://doi.org/10.1016/j.ccm.2019.11.001 |
[3] | Thandra, K.C., Barsouk, A., Saginala, K., Aluru, J.S. and Barsouk, A. (2021) Epidemiology of Lung Cancer. Contemporary Oncology, 25, 45-52. https://doi.org/10.5114/wo.2021.103829 |
[4] | Zhao, Y., Liu, Y., Li, S., Peng, Z., Liu, X., Chen, J. and Zheng, X. (2021) Role of Lung and Gut Microbiota on Lung Cancer Pathogenesis. Journal of Cancer Research and Clinical Oncology, 147, 2177-2186. https://doi.org/10.1007/s00432-021-03644-0 |
[5] | Khan, S.A., Goliwas, K.F. and Deshane, J.S. (2021) Sphingolipids in Lung Pathology in the Coronavirus Disease Era: A Review of Sphingolipid Involvement in the Pathogenesis of Lung Damage. Frontiers in Physiology, 12, Article 760638. https://doi.org/10.3389/fphys.2021.760638 |
[6] | Chen, Y.-J., Roumeliotis, T.I., Chang, Y.-H., Chen, C.-T., Han, C.-L., et al. (2020) Proteogenomics of Non-Smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell, 182, 226-244. https://doi.org/10.1016/j.cell.2020.06.012 |
[7] | Vinod, S.K. and Hau, E. (2020) Radiotherapy Treatment for Lung Cancer: Current Status and Future Directions. Respirology, 25, 61-71. https://doi.org/10.1111/resp.13870 |
[8] | Carrasco-Esteban, E., Domínguez-Rullán, J.A., Barrionuevo-Castillo, P., Pelari-Mici, L., Leaman, O., Sastre-Gallego, S. and López-Campos, F. (2021) Current Role of Nanoparticles in the Treatment of Lung Cancer. Journal of Clinical and Translational Research, 7, 140-155. |
[9] | Su, X.-L., Wang, J.-W., Che, H., Wang, C.-F., Jiang, H., Lei, X., Zhao, W., Kuang, H.-X. and Wang, Q.-H. (2020) Clinical Application and Mechanism of Traditional Chinese Medicine in Treatment of Lung Cancer. Chinese Medical Journal, 133, 2987-2997. https://doi.org/10.1097/CM9.0000000000001141 |
[10] | Guibert, N., Pradines, A., Favre, G. and Mazieres, J. (2020) Current and Future Applications of Liquid Biopsy in Nonsmall Cell Lung Cancer from Early to Advanced Stages. European Respiratory Review, 29, Article 190052. https://doi.org/10.1183/16000617.0052-2019 |
[11] | Xiang, Y., Huang, C., He, Y. and Zhang, Q. (2021) Cancer or Tuberculosis: A Comprehensive Review of the Clinical and Imaging Features in Diagnosis of the Confusing Mass. Frontiers in Oncology, 11, Article 644150. https://doi.org/10.3389/fonc.2021.644150 |
[12] | Zhu, T., Bao, X., Chen, M., Lin, R., Zhuyan, J.N., Zhen, T., Xing, K., Zhou, W. and Zhu, S. (2020) Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Frontiers in Oncology, 10, Article 585284. https://doi.org/10.3389/fonc.2020.585284 |
[13] | Shiravand, Y., Khodadadi, F., Kashani, S.M.A., Hosseini-Fard, S.R., Hosseini, S., Sadeghirad, H., Ladwa, R., O’Byrne, K. and Kulasinghe, A. (2022) Immune Checkpoint Inhibitors in Cancer Therapy. Current Oncology, 29, 3044-3060. https://doi.org/10.3390/curroncol29050247 |
[14] | Vafaei, S., Zekiy, A.O., Khanamir, R.A., Zaman, B.A., Ghayourvahdat, A., Azimizonuzi, H. and Zamani, M. (2022) Combination Therapy with Immune Checkpoint Inhibitors (ICIs); a New Frontier. Cancer Cell International, 22, Article No. 2. https://doi.org/10.1186/s12935-021-02407-8 |
[15] | Robert, C. (2020) A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nature Communications, 11, Article No. 3801. https://doi.org/10.1038/s41467-020-17670-y |
[16] | Singh, S., Hassan, D., Aldawsari, H.M., Molugulu, N., Shukla, R. and Kesharwani, P. (2020) Immune Checkpoint Inhibitors: A Promising Anticancer Therapy. Drug Discovery Today, 25, 223-229. https://doi.org/10.1016/j.drudis.2019.11.003 |
[17] | Sondak, V.K., Smalley, K.S., Kudchadkar, R., Grippon, S. and Kirkpatrick, P. (2011) Ipilimumab. Nature Reviews Drug Discovery, 10, 411-412. https://doi.org/10.1038/nrd3463 |
[18] | Hodi, F.S., O’day, S.J., Mcdermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D. and Hassel, J.C. (2010) Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. New England Journal of Medicine, 363, 711-723. https://doi.org/10.1056/NEJMoa1003466 |
[19] | Wolchok, J.D., Hodi, F.S., Weber, J.S., Allison, J.P., Urba, W.J., Robert, C., O’day, S.J., Hoos, A., Humphrey, R. and Berman, D.M. (2013) Development of Ipilimumab: A Novel Immunotherapeutic Approach for the Treatment of Advanced Melanoma. Annals of the New York Academy of Sciences, 1291, 1-13. https://doi.org/10.1111/nyas.12180 |
[20] | Paz-Ares, L.G., Ramalingam, S.S., Ciuleanu, T.-E., Lee, J.-S., Urban, L., Caro, R.B., Park, K., Sakai, H., Ohe, Y. and Nishio, M. (2022) First-Line Nivolumab plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes from the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial. Journal of Thoracic Oncology, 17, 289-308. https://doi.org/10.1016/j.jtho.2021.09.010 |
[21] | Pinto, J.A., Raez, L.E., Oliveres, H. and Rolfo, C.C. (2019) Current Knowledge of Ipilimumab and Its Use in Treating Non-Small Cell Lung Cancer. Expert Opinion on Biological Therapy, 19, 509-515. https://doi.org/10.1080/14712598.2019.1610380 |
[22] | Hellmann, M.D., Paz-Ares, L., Caro, R.B., Zurawski, B., Kim, S.-W., Costa, E.C., Park, K., et al. (2019) Nivolumab plus Ipilimumab in Advanced Non-Small Cell Lung Cancer. New England Journal of Medicine, 381, 2020-2031. https://doi.org/10.1056/NEJMoa1910231 |
[23] | Gunturi, A. and Mcdermott, D.F. (2015) Nivolumab for the Treatment of Cancer. Expert Opinion on Investigational Drugs, 24, 253-60. https://doi.org/10.1517/13543784.2015.991819 |
[24] | Khoja, L., Butler, M.O., Kang, S.P., Ebbinghaus, S. and Joshua, A.M. (2015) Pembrolizumab. Journal for Immunotherapy of Cancer, 3, 1-13. https://doi.org/10.1186/s40425-015-0078-9 |
[25] | Wang, C., Thudium, K.B., Han, M., Wang, X.-T., Huang, H., Feingersh, D., Garcia, C., Wu, Y., Kuhne, M. and Srinivasan, M. (2014) in Vitro Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and in Vivo Toxicology in Non-Human Primates. Cancer Immunology Research, 2, 846-856. https://doi.org/10.1158/2326-6066.CIR-14-0040 |
[26] | Borghaei, H., Gettinger, S., Vokes, E.E., Chow, L.Q., Burgio, M.A., de Castro Carpeno, J., Pluzanski, A., Arrieta, O., Frontera, O.A. and Chiari, R. (2021) Five-Year Outcomes from the Randomized, Phase III Trials Checkmate 017 and 057: Nivolumab versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 39, 723-733. https://doi.org/10.1200/JCO.20.01605 |
[27] | Horn, L., Spigel, D.R., Vokes, E.E., Holgado, E., Ready, N., Steins, M., Poddubskaya, E., Borghaei, H., Felip, E. and Paz-Ares, L. (2017) Nivolumab versus Docetaxel in Previously Treated Patients with Advanced Non0-Small-Cell Lung Cancer: Two-Year Outcomes from Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). Journal of Clinical Oncology, 35, 3924-3933. https://doi.org/10.1200/JCO.2017.74.3062 |
[28] | Brahmer, J.R., Lee, J.-S., Ciuleanu, T.-E., Bernabe, Caro, R., Nishio, M., Urban, L., Audigier-Valette, C., Lupinacci, L., Sangha, R. and Pluzanski, A. (2023) Five-Year Survival Outcomes with Nivolumab plus Ipilimumab versus Chemotherapy as First-Line Treatment for Metastatic Non-Small-Cell Lung Cancer in CheckMate 227. Journal of Clinical Oncology, 41, 1200-1212. https://doi.org/10.1200/JCO.22.01503 |
[29] | Li, J., Xuan, S., Dong, P., Xiang, Z., Gao, C., Li, M., Huang, L. and Wu, J. (2023) Immunotherapy of Hepatocellular Carcinoma: Recent Progress and New Strategy. Frontiers in Immunology, 14, Article 1192506. https://doi.org/10.3389/fimmu.2023.1192506 |
[30] | Leighl, N.B., Hellmann, M.D., Hui, R., Carcereny, E., Felip, E., Ahn, M.-J., Eder, J.P., Balmanoukian, A.S., Aggarwal, C. and Horn, L. (2019) Pembrolizumab in Patients with Advanced Non-Small-Cell Lung Cancer (KEYNOTE-001): 3-Year Results from an Open-Label, Phase 1 Study. The Lancet Respiratory Medicine, 7, 347-357. https://doi.org/10.1016/S2213-2600(18)30500-9 |
[31] | Herbst, R.S., Baas, P., Kim, D.-W., Felip, E., Pérez-Gracia, J.L., Han, J.-Y., Molina, J., Kim, J.-H., Arvis, C.D. and Ahn, M.-J. (2016) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. The Lancet, 387, 1540-1550. https://doi.org/10.1016/S0140-6736(15)01281-7 |
[32] | Reck, M., Rodriguez-Abreu, D., Robinson, A.G., Hui, R., et al. (2019) Updated Analysis of KEYNOTE-024: Pembrolizumab versus Platinum-Based Chemotherapy for Advanced Non-Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. Journal of Clinical Oncology, 37, 537-546. https://doi.org/10.1200/JCO.18.00149 |
[33] | Mok, T.S., Wu, Y.-L., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., Castro, G., Srimuninnimit, V., Laktionov, K.K. and Bondarenko, I. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830. https://doi.org/10.1016/S0140-6736(18)32409-7 |
[34] | Gadgeel, S., Rodriguez-Abreu, D., Speranza, G., Esteban, E., Felip, E., Dómine, M., Hui, R., Hochmair, M.J., Clingan, P. and Powell, S.F. (2020) Updated Analysis from KEYNOTE-189: Pembrolizumab or Placebo plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 38, 1505-1517. https://doi.org/10.1200/JCO.19.03136 |
[35] | Paz-Ares, L., Vicente, D., Tafreshi, A., Robinson, A., Parra, H.S., Mazières, J., et al. (2020) A Randomized, Placebo-Controlled Trial of Pembrolizumab plus Chemotherapy in Patients with Metastatic Squamous NSCLC: Protocol-Specified Final Analysis of KEYNOTE-407. Journal of Thoracic Oncology, 15, 1657-1669. https://doi.org/10.1016/j.jtho.2020.06.015 |
[36] | Sunshine, J. and Taube, J.M. (2015) Pd-1/Pd-L1 Inhibitors. Current Opinion in Pharmacology, 23, 32-38. https://doi.org/10.1016/j.coph.2015.05.011 |
[37] | Doroshow, D.B., Bhalla, S., Beasley, M.B., Sholl, L.M., Kerr, K.M., Gnjatic, S., Wistuba, I.I., Rimm, D.L., Tsao, M.S. and Hirsch, F.R. (2021) PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 18, 345-362. https://doi.org/10.1038/s41571-021-00473-5 |
[38] | Socinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., Rodr, Guez-Abreu, D., Moro-Sibilot, D., Thomas, C.A. and Barlesi, F. (2018) Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. New England Journal of Medicine, 378, 2288-2301. https://doi.org/10.1056/NEJMoa1716948 |
[39] | Horn, L., Mansfield, A.S., Szcz?sna, A., Havel, L., Krzakowski, M., Hochmair, M.J., Huemer, F., Losonczy, G., Johnson, M.L. and Nishio, M. (2018) First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 379, 2220-2229. https://doi.org/10.1056/NEJMoa1809064 |
[40] | Finn, R.S., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T.-Y., Kudo, M., Breder, V., Merle, P. and Kaseb, A.O. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine, 382, 1894-1905. https://doi.org/10.1056/NEJMoa1915745 |
[41] | Liu, W., Huo, G. and Chen, P. (2022) Efficacy of Atezolizumab for Advanced Non-Small Cell Lung Cancer Based on Clinical and Molecular Features: A Meta-Analysis. Frontiers in Immunology, 13, Article 909027. https://doi.org/10.3389/fimmu.2022.909027 |
[42] | Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., Von, Pawel, J., Gadgeel, S.M., Hida, T., Kowalski, D.M. and Dols, M.C. (2017) Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. The Lancet, 389, 255-265. https://doi.org/10.1016/S0140-6736(16)32517-X |
[43] | Reck, M., Mok, T.S., Nishio, M., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., Rodr, Guez-Abreu, D. and Moro-Sibilot, D. (2019) Atezolizumab plus Bevacizumab and Chemotherapy in Non-Small-Cell Lung Cancer (IMpower150): Key Subgroup Analyses of Patients with EGFR Mutations or Baseline Liver Metastases in a Randomised, Open-Label Phase 3 Trial. The Lancet Respiratory Medicine, 7, 387-401. https://doi.org/10.1016/S2213-2600(19)30084-0 |
[44] | Liu, S.V., Reck, M., Mansfield, A.S., Mok, T., Scherpereel, A., Reinmuth, N., Garassino, M.C., De Castro Carpeno, J., Califano, R. and Nishio, M. (2021) Updated Overall Survival and PD-L1 Subgroup Analysis of Patients with Extensive-Stage Small-Cell Lung Cancer Treated with Atezolizumab, Carboplatin, and Etoposide (IMpower133). Journal of Clinical Oncology, 39, 619-630. https://doi.org/10.1200/JCO.20.01055 |
[45] | Alvarez-Argote, J. and Dasanu, C.A. (2019) Durvalumab in Cancer Medicine: A Comprehensive Review. Expert Opinion on Biological Therapy, 19, 927-935. https://doi.org/10.1080/14712598.2019.1635115 |
[46] | Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., Yokoi, T., Chiappori, A., Lee, K.H., et al. (2017) Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. New England Journal of Medicine, 377, 1919-1929. https://doi.org/10.1056/NEJMoa1709937 |
[47] | Spigel, D.R., Faivre-Finn, C., Gray, J.E., Vicente, D., Planchard, D., Paz-Ares, L., Vansteenkiste, J.F., Garassino, M.C., Hui, R. and Quantin, X. (2022) Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 40, 1301-1311. https://doi.org/10.1200/JCO.21.01308 |
[48] | Bang, A., Schoenfeld, J.D. and Sun, A.Y. (2019) PACIFIC: Shifting Tides in the Treatment of Locally Advanced Non-Small Cell Lung Cancer. Translational Lung Cancer Research, 8, S139-S146. https://doi.org/10.21037/tlcr.2019.09.04 |
[49] | Shen, X. and Zhao, B. (2018) Efficacy of PD-1 or PD-L1 Inhibitors and PD-L1 Expression Status in Cancer: Meta-Analysis. British Medical Journal, 362, k3529. https://doi.org/10.1136/bmj.k3529 |
[50] | Pillai, R.N., Behera, M., Owonikoko, T.K., Kamphorst, A.O., Pakkala, S., Belani, C.P., Khuri, F.R., Ahmed, R. and Ramalingam, S.S. (2018) Comparison of the Toxicity Profile of PD‐1 versus PD‐L1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Analysis of the Literature. Cancer, 124, 271-277. https://doi.org/10.1002/cncr.31043 |
[51] | Spagnuolo, A. and Gridelli, C. (2018) “Comparison of the Toxicity Profile of PD-1 versus PD-L1 Inhibitors in Non-Small Cell Lung Cancer”: Is There a Substantial Difference or Not? Journal of Thoracic Disease, 10, S4065. https://doi.org/10.21037/jtd.2018.09.83 |
[52] | Sacher, A.G. and Gandhi, L. (2016) Biomarkers for the Clinical Use of PD-1/PD-L1 Inhibitors in Non-Small-Cell Lung Cancer: A Review. JAMA Oncology, 2, 1217-1222. https://doi.org/10.1001/jamaoncol.2016.0639 |
[53] | Hamid, O., Robert, C., Daud, A., Hodi, F., Hwu, W., Kefford, R., Wolchok, J., Hersey, P., Joseph, R. and Weber, J. (2019) Five-Year Survival Outcomes for Patients with Advanced Melanoma Treated with Pembrolizumab in KEYNOTE-001. Annals of Oncology, 30, 582-588. https://doi.org/10.1093/annonc/mdz011 |