|
转铁蛋白受体对宫颈癌细胞自噬的影响
|
Abstract:
目的:探讨敲低转铁蛋白受体(TFRC)对宫颈癌Hela细胞增殖、迁移和自噬的影响及可能的作用机制。方法:慢病毒构建敲低TFRC宫颈癌细胞系,分为空白对照组、TFRC敲低阴性对照组、TFRC敲低组。通过蛋白质印迹验证各组目的基因TFRC、自噬相关蛋白Beclin-1、P62、LC3和细胞外信号调节激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白(ERK/AKT/mTOR)信号通路相关蛋白的表达水平。利用CCK8法检测各组细胞增殖活性;流式细胞术检测各组细胞周期分布;细胞划痕实验检测各组细胞迁移能力。结果:与空白对照组相比,TFRC敲低组自噬相关蛋白Beclin-1、LC3蛋白表达水平降低(P < 0.05),P62蛋白表达水平升高(P < 0.05)。p-ERK、p-AKT、p-mTOR蛋白表达水平明显降低(P < 0.01)。细胞增殖能力减弱(P < 0.05),细胞迁移能力被抑制(P < 0.01),细胞周期被阻滞在G2/M期(P < 0.01)。结论:敲低转铁蛋白受体(TFRC)可能通过抑制ERK/AKT/mTOR信号通路抑制宫颈癌细胞自噬,进而抑制其增殖、迁移。
Objective: To investigate the effects of knockdown of transferrin receptor on proliferation, migration and autophagy of Hela cells of cervical cancer, and to study of possible molecular mechanisms. Methods: Lentiviral construction of knockdown TFRC cervical cancer cell lines, and were divided into the blank control group, TFRC knock-down negative control group, TFRC knock-down group. The expression of target gene TFRC, autophagy-related proteins Beclin-1, P62, LC3, and extracellular signal-regulated kinase/protein kinase B/mammalian target of rapamycin (ERK/AKT/mTOR) signaling pathway-related proteins was detected by Western blotting. The activities of cells in various group were detected by CCK-8 assay. Cell cycle distributions in various group were detected by flow cytometry. Cell migration abilities in various group were detected by cell scratch assay. Observation cellular autophagic vesicles in various group by electron microscopy. Results: Compared with the blank control group, the protein expression levels of autophagy-related proteins Beclin-1 and LC3 in cervical cancer cells in TFRC knock-down group decreased (P < 0.05), the protein expression levels of P62 increased (P < 0.05). The protein expression levels of p-ERK, p-AKT, p-mTOR increased (P < 0.01). The proliferation ability of the cells decreased (P < 0.05), cell migration capacity decreased (P < 0.01), arrest the cell cycle in G2/M phase (P < 0.01). Conclusions: Knockdown of transferrin receptor (TFRC) may inhibit autophagy of cervical cancer cells by suppressing the ERK/AKT/mTOR signaling pathway, which in turn inhibits their proliferation and migration.
[1] | Mayadev, J.S., Ke, G., Mahantshetty, U., Pereira, M.D., Tarnawski, R. and Toita, T. (2022) Global Challenges of Radiotherapy for the Treatment of Locally Advanced Cervical Cancer. International Journal of Gynecologic Cancer, 32, 436-445. https://doi.org/10.1136/ijgc-2021-003001 |
[2] | Torti, S.V., Manz, D.H., Paul, B.T., Blanchette-Farra, N. and Torti, F.M. (2018) Iron and Cancer. Annual Review of Nutrition, 38, 97-125. https://doi.org/10.1146/annurev-nutr-082117-051732 |
[3] | 杨克鑫, 刘一萌, 赵天南, 郭丽, 张萍. TFRC通过JAK-STAT信号通路影响宫颈鳞状细胞癌的增殖、迁移和侵袭[J]. 中国计划生育和妇产科, 2023, 15(11): 101-106+112. |
[4] | Levine, B. and Kroemer, G. (2008) Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018 |
[5] | Mancias, J.D., Wang, X., Gygi, S.P., Harper, J.W. and Kimmelman, A.C. (2014) Quantitative Proteomics Identifies NCOA4 as the Cargo Receptor Mediating Ferritinophagy. Nature, 509, 105-109. https://doi.org/10.1038/nature13148 |
[6] | Santana-Codina, N., del Rey, M.Q., Kapner, K.S., Zhang, H., Gikandi, A., Malcolm, C., et al. (2022) NCOA4-Mediated Ferritinophagy Is a Pancreatic Cancer Dependency via Maintenance of Iron Bioavailability for Iron-Sulfur Cluster Proteins. Cancer Discovery, 12, 2180-2197. https://doi.org/10.1158/2159-8290.cd-22-0043 |
[7] | 李沫, 宓淑芳, 王孝信. lncRNA-CCAT1通过调控PI3K/Akt/mTOR信号通路对宫颈癌HeLa细胞自噬的影响[J]. 中国免疫学杂志, 2021, 37(15): 1855-1859. |
[8] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[9] | Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232. https://doi.org/10.1016/j.jnma.2020.03.002 |
[10] | Rahangdale, L., Mungo, C., O’Connor, S., Chibwesha, C.J. and Brewer, N.T. (2022) Human Papillomavirus Vaccination and Cervical Cancer Risk. BMJ, 379, e070115. https://doi.org/10.1136/bmj-2022-070115 |
[11] | Shen, Y., Li, X., Dong, D., Zhang, B., Xue, Y. and Shang, P. (2018) Transferrin Receptor 1 in Cancer: A New Sight for Cancer Therapy. American Journal of Cancer Research, 8, 916-931. |
[12] | Yu, H., Guo, P., Xie, X., Wang, Y. and Chen, G. (2016) Ferroptosis, a New Form of Cell Death, and Its Relationships with Tumourous Diseases. Journal of Cellular and Molecular Medicine, 21, 648-657. https://doi.org/10.1111/jcmm.13008 |
[13] | Kuang, Y. and Wang, Q. (2019) Iron and Lung Cancer. Cancer Letters, 464, 56-61. https://doi.org/10.1016/j.canlet.2019.08.007 |
[14] | Forciniti, S., Greco, L., Grizzi, F., Malesci, A. and Laghi, L. (2020) Iron Metabolism in Cancer Progression. International Journal of Molecular Sciences, 21, Article No. 2257. https://doi.org/10.3390/ijms21062257 |
[15] | Shirakihara, T., Yamaguchi, H., Kondo, T., Yashiro, M. and Sakai, R. (2022) Transferrin Receptor 1 Promotes the Fibroblast Growth Factor Receptor-Mediated Oncogenic Potential of Diffused-Type Gastric Cancer. Oncogene, 41, 2587-2596. https://doi.org/10.1038/s41388-022-02270-5 |
[16] | Klionsky, D.J., Petroni, G., Amaravadi, R.K., Baehrecke, E.H., Ballabio, A., Boya, P., et al. (2021) Autophagy in Major Human Diseases. The EMBO Journal, 40, e108863. https://doi.org/10.15252/embj.2021108863 |
[17] | Lizama, B.N. and Chu, C.T. (2021) Neuronal Autophagy and Mitophagy in Parkinson’s Disease. Molecular Aspects of Medicine, 82, Article ID: 100972. https://doi.org/10.1016/j.mam.2021.100972 |
[18] | Holm, T.M., Bian, Z.C., Manupati, K. and Guan, J. (2022) Inhibition of Autophagy Mitigates Cell Migration and Invasion in Thyroid Cancer. Surgery, 171, 235-244. https://doi.org/10.1016/j.surg.2021.08.024 |
[19] | Liu, P., Li, L., Wang, W., He, C. and Xu, C. (2023) MST4 Promotes Proliferation, Invasion, and Metastasis of Gastric Cancer by Enhancing Autophagy. Heliyon, 9, e16735. https://doi.org/10.1016/j.heliyon.2023.e16735 |
[20] | Abd El-Aziz, Y.S., Gillson, J., Jansson, P.J. and Sahni, S. (2022) Autophagy: A Promising Target for Triple Negative Breast Cancers. Pharmacological Research, 175, Article ID: 106006. https://doi.org/10.1016/j.phrs.2021.106006 |
[21] | Hu, Y., Zhong, J., Gong, L., Zhang, S. and Zhou, S. (2020) Autophagy-Related Beclin 1 and Head and Neck Cancers. OncoTargets and Therapy, 13, 6213-6227. https://doi.org/10.2147/ott.s256072 |
[22] | Harsha, C., Banik, K., Ang, H.L., Girisa, S., Vikkurthi, R., Parama, D., et al. (2020) Targeting AKT/mTOR in Oral Cancer: Mechanisms and Advances in Clinical Trials. International Journal of Molecular Sciences, 21, Article No. 3285. https://doi.org/10.3390/ijms21093285 |
[23] | Guo, Y., Pan, W., Liu, S., Shen, Z., Xu, Y. and Hu, L. (2020) ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Experimental and Therapeutic Medicine, 19, 1997-2007. https://doi.org/10.3892/etm.2020.8454 |
[24] | Barbosa, R., Acevedo, L.A. and Marmorstein, R. (2021) The MEK/ERK Network as a Therapeutic Target in Human Cancer. Molecular Cancer Research, 19, 361-374. https://doi.org/10.1158/1541-7786.mcr-20-0687 |
[25] | Kang, R., Zeh, H.J., Lotze, M.T. and Tang, D. (2011) The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death & Differentiation, 18, 571-580. https://doi.org/10.1038/cdd.2010.191 |
[26] | Huang, H., Han, Q., Zheng, H., Liu, M., Shi, S., Zhang, T., et al. (2021) MAP4K4 Mediates the SOX6-Induced Autophagy and Reduces the Chemosensitivity of Cervical Cancer. Cell Death & Disease, 13, Article No. 13. https://doi.org/10.1038/s41419-021-04474-1 |