全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NLRP3炎性小体在口腔鳞状细胞癌中的调控机制
The Regulatory Mechanism of NLRP3 Inflammasome in Oral Squamous Cell Carcinoma

DOI: 10.12677/acm.2024.1461950, PP. 1571-1580

Keywords: 口腔鳞状细胞癌,NLRP3炎性小体,炎症,分子机制
Oral Squamous Cell Carcinoma
, NLRP3 Inflammasome, Inflammation, Molecular Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

口腔鳞状细胞癌(OSCC)是头颈部最常见的恶性肿瘤,越来越多的证据强调炎症在OSCC进展中的重要性。急性和慢性炎症的主要信号通路包括NLR家族含pyrin结构域3 (NLRP3)炎性小体的激活,随后是胱天蛋白酶-1依赖性的促炎细胞因子IL-1β和IL-18的释放,以及由gasdermin-D介导细胞死亡。许多研究表明NLRP3炎性小体参与OSCC的发生,但是具体作用机制仍需进一步探索。因此,本文综述了NLRP3炎性小体的作用机制,并为开发新的OSCC治疗策略提供研究基础。
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck, and increasing evidence emphasizes the importance of inflammation in the progression of OSCC. The main signaling pathways of acute and chronic inflammation include the activation of NLR family pyrin domain 3 (NLRP3) inflammasomes, followed by the caspase-1-dependent pro-inflammatory cytokine IL-1β and the release of IL-18, as well as cell death mediated by gasdermin-D. Many studies have shown that NLRP3 inflammasomes are involved in the occurrence of OSCC, but the specific mechanism of action still needs further exploration. Therefore, this article reviews the mechanism of action of NLRP3 inflammasome and provides a research basis for the development of new OSCC treatment strategies.

References

[1]  Wang, Y., Hu, H., Wang, Q., Li, Z., Zhu, Y., Zhang, W., et al. (2017) The Level and Clinical Significance of 5-Hydroxymethylcytosine in Oral Squamous Cell Carcinoma: An Immunohistochemical Study in 95 Patients. PathologyResearch and Practice, 213, 969-974.
https://doi.org/10.1016/j.prp.2017.04.016
[2]  Panarese, I., Aquino, G., Ronchi, A., Longo, F., Montella, M., Cozzolino, I., et al. (2019) Oral and Oropharyngeal Squamous Cell Carcinoma: Prognostic and Predictive Parameters in the Etiopathogenetic Route. Expert Review of Anticancer Therapy, 19, 105-119.
https://doi.org/10.1080/14737140.2019.1561288
[3]  Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820.
https://doi.org/10.1016/j.cell.2010.01.022
[4]  Kim, Y.K., Shin, J. and Nahm, M.H. (2016) Nod-Like Receptors in Infection, Immunity, and Diseases. Yonsei Medical Journal, 57, 5-14.
https://doi.org/10.3349/ymj.2016.57.1.5
[5]  Liston, A. and Masters, S.L. (2017) Homeostasis-Altering Molecular Processes as Mechanisms of Inflammasome Activation. Nature Reviews Immunology, 17, 208-214.
https://doi.org/10.1038/nri.2016.151
[6]  Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, 588-606.
https://doi.org/10.1038/nrd.2018.97
[7]  Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328.
https://doi.org/10.3390/ijms20133328
[8]  Vandanmagsar, B., Youm, Y., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., et al. (2011) The NLRP3 Inflammasome Instigates Obesity-Induced Inflammation and Insulin Resistance. Nature Medicine, 17, 179-188.
https://doi.org/10.1038/nm.2279
[9]  He, Y., Hara, H. and Nú?ez, G. (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends in Biochemical Sciences, 41, 1012-1021.
https://doi.org/10.1016/j.tibs.2016.09.002
[10]  Xue, Y., Enosi Tuipulotu, D., Tan, W.H., Kay, C. and Man, S.M. (2019) Emerging Activators and Regulators of Inflammasomes and Pyroptosis. Trends in Immunology, 40, 1035-1052.
https://doi.org/10.1016/j.it.2019.09.005
[11]  Rathinam, V.A.K. and Fitzgerald, K.A. (2016) Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell, 165, 792-800.
https://doi.org/10.1016/j.cell.2016.03.046
[12]  De Nardo, D. and Latz, E. (2011) NLRP3 Inflammasomes Link Inflammation and Metabolic Disease. Trends in Immunology, 32, 373-379.
https://doi.org/10.1016/j.it.2011.05.004
[13]  Davis, B.K., Wen, H. and Ting, J.P.-. (2011) The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annual Review of Immunology, 29, 707-735.
https://doi.org/10.1146/annurev-immunol-031210-101405
[14]  Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/s1097-2765(02)00599-3
[15]  Doyle, S., Ozaki, E. and Campbell, M. (2015) Targeting the NLRP3 Inflammasome in Chronic Inflammatory Diseases: Current Perspectives. Journal of Inflammation Research, 8, 15-27.
https://doi.org/10.2147/jir.s51250
[16]  Menu, P. and Vince, J.E. (2011) The NLRP3 Inflammasome in Health and Disease: The Good, the Bad and the Ugly. Clinical and Experimental Immunology, 166, 1-15.
https://doi.org/10.1111/j.1365-2249.2011.04440.x
[17]  Mason, D.R., Beck, P.L. and Muruve, D.A. (2011) Nucleotide-Binding Oligomerization Domain-Like Receptors and Inflammasomes in the Pathogenesis of Non-Microbial Inflammation and Diseases. Journal of Innate Immunity, 4, 16-30.
https://doi.org/10.1159/000334247
[18]  Gurung, P. and Kanneganti, T. (2015) Novel Roles for Caspase-8 in Il-1β and Inflammasome Regulation. The American Journal of Pathology, 185, 17-25.
https://doi.org/10.1016/j.ajpath.2014.08.025
[19]  O’Connor, W., Harton, J.A., Zhu, X., Linhoff, M.W. and Ting, J.P. (2003) Cutting Edge: CIAS1/Cryopyrin/PYPAF1/NALP3/CATERPILLER1.1 Is an Inducible Inflammatory Mediator with NF-κB Suppressive Properties. The Journal of Immunology, 171, 6329-6333.
https://doi.org/10.4049/jimmunol.171.12.6329
[20]  Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. and Kolodner, R.D. (2001) Mutation of a New Gene Encoding a Putative Pyrin-Like Protein Causes Familial Cold Autoinflammatory Syndrome and Muckle-Wells Syndrome. Nature Genetics, 29, 301-305.
https://doi.org/10.1038/ng756
[21]  Lupfer, C. and Kanneganti, T. (2013) The Expanding Role of NLRs in Antiviral Immunity. Immunological Reviews, 255, 13-24.
https://doi.org/10.1111/imr.12089
[22]  Duncan, J.A., Gao, X., Huang, M.T., O’Connor, B.P., Thomas, C.E., Willingham, S.B., et al. (2009) Neisseria gonorrhoeae Activates the Proteinase Cathepsin B to Mediate the Signaling Activities of the NLRP3 and ASC-Containing Inflammasome. The Journal of Immunology, 182, 6460-6469.
https://doi.org/10.4049/jimmunol.0802696
[23]  Deretic, V. (2011) Autophagy in Immunity and Cell‐autonomous Defense against Intracellular Microbes. Immunological Reviews, 240, 92-104.
https://doi.org/10.1111/j.1600-065x.2010.00995.x
[24]  Galluzzi, L. and Green, D.R. (2019) Autophagy-independent Functions of the Autophagy Machinery. Cell, 177, 1682-1699.
https://doi.org/10.1016/j.cell.2019.05.026
[25]  Zaheer, A., Zaheer, S., Sahu, S.K., Knight, S., Khosravi, H., Mathur, S.N., et al. (2006) A Novel Role of Glia Maturation Factor: Induction of Granulocyte‐Macrophage Colony‐Stimulating Factor and Pro‐Inflammatory Cytokines. Journal of Neurochemistry, 101, 364-376.
https://doi.org/10.1111/j.1471-4159.2006.04385.x
[26]  Deretic, V., Jiang, S. and Dupont, N. (2012) Autophagy Intersections with Conventional and Unconventional Secretion in Tissue Development, Remodeling and Inflammation. Trends in Cell Biology, 22, 397-406.
https://doi.org/10.1016/j.tcb.2012.04.008
[27]  Zhou, H., Feng, L., Xu, F., Sun, Y., Ma, Y., Zhang, X., et al. (2017) Berberine Inhibits Palmitate-Induced NLRP3 Inflammasome Activation by Triggering Autophagy in Macrophages: A New Mechanism Linking Berberine to Insulin Resistance Improvement. Biomedicine & Pharmacotherapy, 89, 864-874.
https://doi.org/10.1016/j.biopha.2017.03.003
[28]  Liu, P., Huang, G., Wei, T., Gao, J., Huang, C., Sun, M., et al. (2018) Sirtuin 3-Induced Macrophage Autophagy in Regulating NLRP3 Inflammasome Activation. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 764-777.
https://doi.org/10.1016/j.bbadis.2017.12.027
[29]  Spalinger, M.R., Kasper, S., Gottier, C., Lang, S., Atrott, K., Vavricka, S.R., et al. (2016) NLRP3 Tyrosine Phosphorylation Is Controlled by Protein Tyrosine Phosphatase PTPN22. Journal of Clinical Investigation, 126, 1783-1800.
https://doi.org/10.1172/jci83669
[30]  Nurmi, K., Kareinen, I., Virkanen, J., Rajam?ki, K., Kouri, V., Vaali, K., et al. (2016) Hemin and Cobalt Protoporphyrin Inhibit NLRP3 Inflammasome Activation by Enhancing Autophagy: A Novel Mechanism of Inflammasome Regulation. Journal of Innate Immunity, 9, 65-82.
https://doi.org/10.1159/000448894
[31]  Spalinger, M.R., Lang, S., Gottier, C., Dai, X., Rawlings, D.J., Chan, A.C., et al. (2017) PTPN22 Regulates NLRP3-Mediated IL1B Secretion in an Autophagy-Dependent Manner. Autophagy, 13, 1590-1601.
https://doi.org/10.1080/15548627.2017.1341453
[32]  Yang, S., Xia, C., Li, S., Du, L., Zhang, L. and Zhou, R. (2014) Defective Mitophagy Driven by Dysregulation of Rheb and KIF5B Contributes to Mitochondrial Reactive Oxygen Species (ROS)-Induced Nod-Like Receptor 3 (NLRP3) Dependent Proinflammatory Response and Aggravates Lipotoxicity. Redox Biology, 3, 63-71.
https://doi.org/10.1016/j.redox.2014.04.001
[33]  Wu, J., Li, X., Zhu, G., Zhang, Y., He, M. and Zhang, J. (2016) The Role of Resveratrol-Induced Mitophagy/Autophagy in Peritoneal Mesothelial Cells Inflammatory Injury via NLRP3 Inflammasome Activation Triggered by Mitochondrial ROS. Experimental Cell Research, 341, 42-53.
https://doi.org/10.1016/j.yexcr.2016.01.014
[34]  Wang, H., Peng, W., Ouyang, X., Li, W. and Dai, Y. (2012) Circulating microRNAs as Candidate Biomarkers in Patients with Systemic Lupus Erythematosus. Translational Research, 160, 198-206.
https://doi.org/10.1016/j.trsl.2012.04.002
[35]  Bachar-Wikstrom, E., Wikstrom, J.D., Kaiser, N., Cerasi, E. and Leibowitz, G. (2013) Improvement of ER Stress-Induced Diabetes by Stimulating Autophagy. Autophagy, 9, 626-628.
https://doi.org/10.4161/auto.23642
[36]  Shi, H., Zhang, Z., Wang, X., Li, R., Hou, W., Bi, W., et al. (2015) Inhibition of Autophagy Induces Il-1β Release from ARPE-19 Cells via ROS Mediated NLRP3 Inflammasome Activation under High Glucose Stress. Biochemical and Biophysical Research Communications, 463, 1071-1076.
https://doi.org/10.1016/j.bbrc.2015.06.060
[37]  Apte, R.N., Krelin, Y., Song, X., Dotan, S., Recih, E., Elkabets, M., et al. (2006) Effects of Micro-Environment-and Malignant Cell-Derived Interleukin-1 in Carcinogenesis, Tumour Invasiveness and Tumour-Host Interactions. European Journal of Cancer, 42, 751-759.
https://doi.org/10.1016/j.ejca.2006.01.010
[38]  Apte, R.N. and Voronov, E. (2008) Is Interleukin‐1 a Good or Bad ‘Guy’ in Tumor Immunobiology and Immunotherapy? Immunological Reviews, 222, 222-241.
https://doi.org/10.1111/j.1600-065x.2008.00615.x
[39]  叶玉妹, 陈隆望, 张万里, 等. NLRP3炎症小体抑制剂MCC950通过抑制Th1/Th17和促进Tregs改善脓毒症小鼠器官损伤[J]. 温州医科大学学报, 2024, 54(3): 190-198.
[40]  Shinriki, S., Jono, H., Ueda, M., Ota, K., Ota, T., Sueyoshi, T., et al. (2011) Interleukin‐6 Signalling Regulates Vascular Endothelial Growth Factor‐C Synthesis and Lymphangiogenesis in Human Oral Squamous Cell Carcinoma. The Journal of Pathology, 225, 142-150.
https://doi.org/10.1002/path.2935
[41]  Shintani, S., Ishikawa, T., Nonaka, T., Li, C., Nakashiro, K., Wong, D.T.W., et al. (2004) Growth-Regulated Oncogene-1 Expression Is Associated with Angiogenesis and Lymph Node Metastasis in Human Oral Cancer. Oncology, 66, 316-322.
https://doi.org/10.1159/000078333
[42]  史国军, 王永生, 何国浓, 等. 冬凌草甲素逆转BEL-7402/5-FU化疗耐药作用的体内研究[J]. 浙江中西医结合杂志, 2023, 33(10): 888-892, 908.
[43]  Scuderi, S.A., Casili, G., Basilotta, R., Lanza, M., Filippone, A., Raciti, G., et al. (2021) NLRP3 Inflammasome Inhibitor BAY-117082 Reduces Oral Squamous Cell Carcinoma Progression. International Journal of Molecular Sciences, 22, Article 11108.
https://doi.org/10.3390/ijms222011108
[44]  Zi, M., Chen, X.Y., Yang, C., Su, X.D., Lv, S.X. and Wei, S.C. (2022) Improved Antitumor Immunity of Chemotherapy in OSCC Treatment by Gasdermin-E Mediated Pyroptosis. Apoptosis, 28, 348-361.
https://doi.org/10.1007/s10495-022-01792-3
[45]  Yang, J., Ren, X., Zhang, L., Li, Y., Cheng, B. and Xia, J. (2018) Oridonin Inhibits Oral Cancer Growth and PI3K/Akt Signaling Pathway. Biomedicine & Pharmacotherapy, 100, 226-232.
https://doi.org/10.1016/j.biopha.2018.02.011
[46]  李雯. 卡瑞利珠单抗联合DDP化疗方案对晚期非小细胞肺癌的疗效[J]. 吉林医学, 2024, 45(5): 1149-1152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133