全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

动脉粥样硬化组织中衰老基因的鉴定及免疫浸润分析
Identification of Aging Genes and Analysis of Immune Infiltration in Atherosclerosis

DOI: 10.12677/acm.2024.1461929, PP. 1409-1426

Keywords: 动脉粥样硬化,细胞衰老,生物信息学,GEO,免疫浸润
Atherosclerosis
, Cell Aging, Bioinformatics, GEO, Immune Infiltration

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:基于生物信息学方法来识别参与AS中的衰老基因。为靶向衰老细胞延缓衰老相关心血管疾病的发生提供理论依据。方法:我们在基因表达数据库(GEO)中选取GSE21545和GSE43292作为训练集,选取其中部分数据进行合并,去除批次效应。计算合并数据集的差异表达基因(DEGs),并进行GO、KEGG富集分析。DEGs与衰老基因集(ARGs)取交集,得出筛选差异表达的衰老相关基因(DE-ARGs),进行蛋白相互作用网络分析,分别采用MCC、MNC、EPC、Degree、Closeness、Radiality六种方法,选取各自前10位的Node基因取交集作为hub基因。同时对动脉粥样硬化组织的免疫细胞浸润情况进行分析,并构建hub基因调控的ceRNA网络。最后我们在GSE100927数据集中验证了hub基因的表达,以证实我们研究的普遍性。结果:我们从De-ARGs中确定了5个hub基因。功能富集分析表明,这些标记基因对氧化应激的反应,蛋白磷酸酶结合,PI3K-Akt信号通路等至关重要。通过免疫浸润分析发现,多种免疫细胞参与AS,hub基因与免疫细胞存在明显相关性。ceRNA调控网络显示,mRNA与miRNA、lncRNA之间具有一对多和多对一的复杂关系。利用外部数据集GSE100927,验证发现其中4个hub基因(IGF1, GRB2, MYC, PTEN)表达存在与训练集一致的显著性差异。结论:通过生物信息学方法,可以发现衰老基因在动脉粥样硬化组织中的表达情况及相关生物学功能,为靶向衰老细胞延缓衰老相关心血管疾病的发生提供理论依据。
Objective: Identify aging genes involved in AS based on bioinformatics methods. It provides a theoretical basis for targeting aging cells to delay the occurrence of aging related cardiovascular diseases. Methods: We selected GSE21545 and GSE43292 as training sets in the Gene Expression Database (GEO), and merged some of the data to remove batch effects. Calculate differentially expressed genes (DEGs) from the merged dataset and perform GO and KEGG enrichment analysis. The intersection of DEGs and aging gene sets (ARGs) was obtained to screen differentially expressed aging related genes (DE-ARGs). Protein interaction network analysis was performed using six methods: MCC, MNC, EPC, Degree, Closeness, and Radiality. The intersection of the top 10 node genes was selected as the hub gene. At the same time, the infiltration of immune cells in Atherosclerosis tissue was analyzed, and the ceRNA network regulated by hub gene was constructed. Finally, we validated the expression of hub gene in the GSE100927 dataset to confirm the universality of our study. Results: We identified 5 hub genes from De-ARGs. Functional enrichment analysis indicates that these marker genes are crucial for their response to oxidative stress, protein phosphatase binding, and PI3K Akt signaling pathway. Through immune infiltration analysis, it was found that multiple immune cells are involved in AS, and there is a significant correlation between hub genes and immune cells. The ceRNA regulatory network shows a complex one-to-many and many-to-one relationship between mRNA, miRNA, and lncRNA. Using the external dataset GSE100927, it was found that there were significant differences in the expression of four hub genes (IGF1, GRB2, MYC, PTEN) consistent with the training set. Conclusion: Through bioinformatics methods, we can find the expression of aging genes in Atherosclerosis tissues and related biological functions,

References

[1]  Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
https://doi.org/10.1016/j.jacc.2020.11.010
[2]  Poller, W.C., Nahrendorf, M. and Swirski, F.K. (2020) Hematopoiesis and Cardiovascular Disease. Circulation Research, 126, 1061-1085.
https://doi.org/10.1161/circresaha.120.315895
[3]  Goldberger, A.L., Peng, C.K. and Lipsitz, L.A. (2002) What Is Physiologic Complexity and How Does It Change with Aging and Disease? Neurobiology of Aging, 23, 23-26.
https://doi.org/10.1016/s0197-4580(01)00266-4
[4]  Campisi, J. and d'Adda di Fagagna, F. (2007) Cellular Senescence: When Bad Things Happen to Good Cells. Nature Reviews Molecular Cell Biology, 8, 729-740.
https://doi.org/10.1038/nrm2233
[5]  Fyhrquist, F., Saijonmaa, O. and Strandberg, T. (2013) The Roles of Senescence and Telomere Shortening in Cardiovascular Disease. Nature Reviews Cardiology, 10, 274-283.
https://doi.org/10.1038/nrcardio.2013.30
[6]  Zhang, Z., Murtagh, F., Van Poucke, S., Lin, S. and Lan, P. (2017) Hierarchical Cluster Analysis in Clinical Research with Heterogeneous Study Population: Highlighting Its Visualization with R. Annals of Translational Medicine, 5, 75-75.
https://doi.org/10.21037/atm.2017.02.05
[7]  Solanki, A., Bhatt, L.K. and Johnston, T.P. (2018) Evolving Targets for the Treatment of Atherosclerosis. Pharmacology & Therapeutics, 187, 1-12.
https://doi.org/10.1016/j.pharmthera.2018.02.002
[8]  中国发展研究基金会. 中国发展报告2020: 中国人口老龄化的发展趋势和政策[M]. 北京: 人民出版社, 2020.
[9]  Fleg, J.L., Aronow, W.S. and Frishman, W.H. (2010) Cardiovascular Drug Therapy in the Elderly: Benefits and Challenges. Nature Reviews Cardiology, 8, 13-28.
https://doi.org/10.1038/nrcardio.2010.162
[10]  Heidenreich, P.A., Trogdon, J.G., Khavjou, O.A., Butler, J., Dracup, K., Ezekowitz, M.D., et al. (2011) Forecasting the Future of Cardiovascular Disease in the United States. Circulation, 123, 933-944.
https://doi.org/10.1161/cir.0b013e31820a55f5
[11]  Childs, B.G., Durik, M., Baker, D.J. and van Deursen, J.M. (2015) Cellular Senescence in Aging and Age-Related Disease: From Mechanisms to Therapy. Nature Medicine, 21, 1424-1435.
https://doi.org/10.1038/nm.4000
[12]  Maehama, T. and Dixon, J.E. (1998) The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3, 4, 5-Trisphosphate. Journal of Biological Chemistry, 273, 13375-13378.
https://doi.org/10.1074/jbc.273.22.13375
[13]  Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., et al. (1998) Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN. Cell, 95, 29-39.
https://doi.org/10.1016/s0092-8674(00)81780-8
[14]  Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., et al. (1997) PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science, 275, 1943-1947.
https://doi.org/10.1126/science.275.5308.1943
[15]  薛锐, 夏中元, 孟庆涛. PTEN在神经系统损伤、心血管疾病发生发展中的作用研究进展[J]. 山东医药, 2016, 56(3): 93-94.
[16]  Bretón-Romero, R., Kalwa, H., Lamas, S. and Michel, T. (2013) Role of PTEN in Modulation of ADP-Dependent Signaling Pathways in Vascular Endothelial Cells. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833, 2586-2595.
https://doi.org/10.1016/j.bbamcr.2013.06.009
[17]  于林君, 祝善俊, 周裔忠, 等. PTEN抑制钙/钙调神经磷酸酶信号通路、负性调控血管紧张素II所致心肌细胞肥大[J]. 中华心血管病杂志, 2006(6): 541-545.
[18]  李勇, 杨特, 沈怡. miRNA-26a抑制ox-LDL介导的HAECs凋亡作用的机制研究[J]. 重庆医学, 2016, 45(36): 5052-5055.
https://doi.org/10.3969/j.issn.1671-8348.2016.36.004
[19]  Dong, X., Yu, L., Sun, R., Cheng, Y., Cao, H., Yang, K., et al. (2012) Inhibition of PTEN Expression and Activity by Angiotensin II Induces Proliferation and Migration of Vascular Smooth Muscle Cells. Journal of Cellular Biochemistry, 114, 174-182.
https://doi.org/10.1002/jcb.24315
[20]  Ittner, A., Block, H., Reichel, C.A., Varjosalo, M., Gehart, H., Sumara, G., et al. (2012) Regulation of PTEN Activity by P38δ-Pkd1 Signaling in Neutrophils Confers Inflammatory Responses in the Lung. Journal of Experimental Medicine, 209, 2229-2246.
https://doi.org/10.1084/jem.20120677
[21]  Shen, W.H., Balajee, A.S., Wang, J., Wu, H., Eng, C., Pandolfi, P.P., et al. (2007) Essential Role for Nuclear PTEN in Maintaining Chromosomal Integrity. Cell, 128, 157-170.
https://doi.org/10.1016/j.cell.2006.11.042
[22]  Fantl, W.J., Escobedo, J.A., Martin, G.A., et al. (1992) Distinct Phosphotyrosines on a Growth Factor Receptor Bind to Specific Molecules That Mediate Different Signaling Pathways. Cell, 69, 413-423.
[23]  Tari, A.M. and Lopez-Berestein, G. (2001) GRB2: A Pivotal Protein in Signal Transduction. Seminars in Oncology, 28, 142-147.
https://doi.org/10.1053/sonc.2001.28555
[24]  Joo, J.H., Oh, H., Kim, M., An, E.J., Kim, R., Lee, S., et al. (2016) NADPH Oxidase 1 Activity and ROS Generation Are Regulated by Grb2/Cbl-Mediated Proteasomal Degradation of Noxo1 in Colon Cancer Cells. Cancer Research, 76, 855-865.
https://doi.org/10.1158/0008-5472.can-15-1512
[25]  Proctor, B.M., Ren, J., Chen, Z., Schneider, J.G., Coleman, T., Lupu, T.S., et al. (2007) Grb2 Is Required for Atherosclerotic Lesion Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 1361-1367.
https://doi.org/10.1161/atvbaha.106.134007
[26]  Tong, S., Qingsong, Y.U. and Saying, D. (2019) Effects of GRB2 Gene Silencing on Lipid Deposition and Inflammatory Infiltration in Atherosclerotic rats through Inhibiting PI3K/AKT/NF-κB Signaling Pathway. Journal of Southeast University (Medical Science Edition), 38, 792-799.
[27]  Adams, T.E., Epa, V.C., Garrett, T.P.J. and Ward, C.W. (2000) Structure and Function of the Type 1 Insulin-Like Growth Factor Receptor. Cellular and Molecular Life Sciences, 57, 1050-1093.
https://doi.org/10.1007/pl00000744
[28]  De Meyts, P. and Whittaker, J. (2002) Structural Biology of Insulin and IGF1 Receptors: Implications for Drug Design. Nature Reviews Drug Discovery, 1, 769-783.
https://doi.org/10.1038/nrd917
[29]  Gallagher, E.J. and LeRoith, D. (2010) The Proliferating Role of Insulin and Insulin-Like Growth Factors in Cancer. Trends in Endocrinology & Metabolism, 21, 610-618.
https://doi.org/10.1016/j.tem.2010.06.007
[30]  Puche, J.E. and Castilla-Cortázar, I. (2012) Human Conditions of Insulin-Like Growth Factor-I (IGF-I) Deficiency. Journal of Translational Medicine, 10, ArticleNo. 224.
https://doi.org/10.1186/1479-5876-10-224
[31]  Onn, A., Isobe, T., Wu, W., Itasaka, S., Shintani, T., Shibuya, K., et al. (2004) Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Does Not Improve Paclitaxel Effect in an Orthotopic Mouse Model of Lung Cancer. Clinical Cancer Research, 10, 8613-8619.
https://doi.org/10.1158/1078-0432.ccr-04-1241
[32]  Gridelli, C., Rossi, A., Maione, P., Colantuoni, G., Gaizo, F.D., Ferrara, C., et al. (2007) Erlotinib in Non-Small-Cell Lung Cancer. Expert Opinion on Pharmacotherapy, 8, 2579-2592.
https://doi.org/10.1517/14656566.8.15.2579
[33]  Lamb, D.J., Modjtahedi, H., Plant, N.J. and Ferns, G.A.A. (2004) EGF Mediates Monocyte Chemotaxis and Macrophage Proliferation and EGF Receptor Is Expressed in Atherosclerotic Plaques. Atherosclerosis, 176, 21-26.
https://doi.org/10.1016/j.atherosclerosis.2004.04.012
[34]  Wang, L., Huang, Z., Huang, W., et al. (2017) Inhibition of Epidermal Growth Factor Receptor Attenuates Atherosclerosis via De-Creasing Inflammation and Oxidative Stress. Scientific Reports, 8, Article No. 45917.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133