全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于PJMIF的超快气阀性能表征
Performance Characterization of an Ultrafast Gas Valve for PJMIF

DOI: 10.12677/app.2024.146056, PP. 508-521

Keywords: PJMIF,超快气阀,三角激光测距法,飞盘
PJMIF
, Ultrafast Valve, Laser Triangulation Method, Flyer Plate

Full-Text   Cite this paper   Add to My Lib

Abstract:

上海科技大学正在研发第三代用于PJMIF的同轴等离子体枪STG1以及配套超快气阀。STG1的超快气阀需要在百微秒(~100 μs)的开关时间内注入0~30 mg的均匀气体。超快气阀利用j × B电磁力驱动金属飞盘控制气路开关,检测气阀结构中金属飞盘弹射时的运动轨迹可以直接体现气阀的稳定性和开关性能。针对两种结构的超快气阀搭建实验平台,采用激光三角测距法对气阀的金属飞盘的位移进行检测,获得金属飞盘在两种结构下的位移曲线,以及新型结构的气阀在不同电压下的开关时间,并通过有限元分析法对飞盘弹射过程中的振动现象进行验证。研究结果表明,金属飞盘在弹射过程中会产生中心振动,新型弹簧和短翼无孔飞盘组合下的新型结构相比于传统结构具有更高的重复性,可以通过改变电压的方式可以有效的将气阀的开关时间控制在0~300 μs。
The coaxial plasma gun used for PJMIF requires the injection of 0~30 mg of uniform gas with the ultrafast gas valve at the switching time of hundreds of microseconds (~300 μs). The stability and switching time of the ultrafast gas valve can be directly determined by measuring the position displacement trajectory of the metal flyer plate ejection. An experimental platform was built for detecting two kinds of ultrafast gas valves, and the displacement of metal flyer plate of the valve was detected by laser triangulation method. The displacement curves of the metal flyer plate under two kinds of structures and the switching time of the gas valve of the new structure under different voltages were obtained. The oscillation phenomenon during the flyer plate ejection process was verified by finite element analysis. The results show that the metal flyer plate will produce the central oscillation during the ejection process. Compared with the traditional structure, the new structure under the combination of new spring and short wing flyer plate has higher repeatability, and can effectively control the switching time of the gas valve within 0~300 μs by changing the voltage.

References

[1]  Witherspoon, F.D., Case, A., Messer, S.J., Bomgardner, R., Phillips, M.W., Brockington, S., et al. (2009) A Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature. Review of Scientific Instruments, 80, Article ID: 083506.
https://doi.org/10.1063/1.3202136
[2]  Thio, Y.C.F., Hsu, S.C., Witherspoon, F.D., Cruz, E., Case, A., Langendorf, S., et al. (2019) Plasma-Jet-Driven Magneto-Inertial Fusion. Fusion Science and Technology, 75, 581-598.
https://doi.org/10.1080/15361055.2019.1598736
[3]  Siemon, R.E., Turchi, P.J., Barnes, D.C., Degnan, J.H., Parks, P., Ryutov, D. and Thio, Y.C. (2002) Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy. Journal of Plasma and Fusion Research SERIES, 5, 63-58.
[4]  Thio, Y.C.F. (2008) Status of the US Program in Magneto-Inertial Fusion. Journal of Physics: Conference Series, 112, Article ID: 042084.
https://doi.org/10.1088/1742-6596/112/4/042084
[5]  Thio, Y.C. (1986) Feasibility Study of a Railgun as a Driver for Impact Fusion: Final Report.
https://www.osti.gov/biblio/6956782
[6]  Handley, M.C., Slesinski, D. and Hsu, S.C. (2021) Potential Early Markets for Fusion Energy. Journal of Fusion Energy, 40, Article No. 18.
https://doi.org/10.1007/s10894-021-00306-4
[7]  Nehl, C.L., Umstattd, R.J., Regan, W.R., Hsu, S.C. and McGrath, P.B. (2019), Retrospective of the ARPA-E ALPHA Fusion Program. Journal of Fusion Energy, 38, 506-521
[8]  Hsu, S.C., Langendorf, S.J., Yates, K.C., Dunn, J.P., Brockington, S., Case, A., et al. (2018) Experiment to Form and Characterize a Section of a Spherically Imploding Plasma Liner. IEEE Transactions on Plasma Science, 46, 1951-1961.
https://doi.org/10.1109/tps.2017.2779421
[9]  杨显俊, 李璐璐. 磁惯性约束聚变: 通向聚变能源的新途径[J]. 中国科学, 2016, 46(11): 23-40.
[10]  Thio, Y., Witherspoon, F., Cruz, E., Brockington, S., Case, A., Williams, A. and Luna, M (2018) Coaxial Plasma Gun Development for Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF). Annual Meeting of the Division of Plasma Physics of American Physical Society, Portland, 5-9 November 2018.
[11]  吴成, 沈志刚, 李大万, 江德仪, 杨思泽. FMGV-1型快速电磁阀[J]. 真空科学与技术, 1989, 9(2): 103-106.
[12]  吴成, 江德仪, 杨思泽, 沈志刚. 高重复性脉冲电磁气阀(FMGV-2) [J]. 仪器仪表学报, 1990, 11(2): 115-121.
[13]  冯春华, 房同珍, 王龙, 杨宣宗, 黄建国, 陈朝峰, 韩建伟, 孙远程. 等离子体驱动碎片加速器中脉冲充气电磁阀[J]. 核聚变与等离子体物理, 2011, 31(2): 181-185.
[14]  郭海山, 杨兰均, 刘帅. 等离子体电磁加速器中快速电磁阀气体注入特性研究[J]. 核聚变与等离子体物理, 2020,40(1): 85-89.
[15]  邸志刚, 沈萌萌, 贾春荣, 陈佳旗, 冯若楠. 激光测距技术研究现状及发展趋势[J]. 激光杂志, 2023, 40(8): 1-8.
[16]  Lombardo, V., Marzulli, T., Pappalettere, C. and Sforza, P. (2003) A Time-of-Scan Laser Triangulation Technique for Distance Measurements. Optics and Lasers in Engineering, 39, 247-254.
https://doi.org/10.1016/s0143-8166(01)00121-x
[17]  徐瑞超, 胡艳凯, 线晨. 激光三角法微位移测量的算法比较[J]. 上海电气技术, 2021, 14(4): 75-78.
[18]  王冬, 崔建军, 张福民, 闵帅博, 陈恺. 用于微位移测量的迈克尔逊激光干涉仪综述[J]. 计量学报, 2021, 42(1): 1-8.
[19]  冯俊艳, 冯其波, 匡萃方. 高精度激光三角位移传感器的技术现状[J]. 应用光学, 2004(1): 33-36.
[20]  孙有春, 庞亚军, 白振旭, 王雨雷, 吕志伟. 激光三角测量法应用技术[J]. 激光杂志, 2021 42(4): 1-8.
[21]  郑青春. 超塑预处理对高强铝合金7A04和2024的性能影响研究[D]: [博士学位论文]. 长沙: 中南大学, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133