Effect of Size and Initial Water Content on the Effective Diffusion Coefficient during Convective Drying of Sweet Potato Cut into Cubic and Cylindrical Shapes
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10?10 and 10?9 m2?s?1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10?9 m2?s?1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
References
[1]
FAO (2024) Cultures et produits animaux. https://www.fao.org/faostat/fr/#data/QCL
[2]
FAO (2024) Valeur de la Production Agricole. https://www.fao.org/faostat/fr/#data/QV/visualize
[3]
Akpinar, E., Midilli, A. and Bicer, Y. (2003) Single Layer Drying Behaviour of Potato Slices in a Convective Cyclone Dryer and Mathematical Modeling. Energy Conversion and Management, 44, 1689-1705. https://doi.org/10.1016/s0196-8904(02)00171-1
[4]
Alzamora, S.M., Chirife, J. and Voillaz, P. (1979) A Simplified Model for Predicting the Temperatures of Foods during Air Dehydration. International Journal of Food Science & Technology, 14, 369-380. https://doi.org/10.1111/j.1365-2621.1979.tb00882.x
[5]
Ghazanfari, A., Emami, S., Tabil, L.G. and Panigrahi, S. (2006) Thin-layer Drying of Flax Fiber: II. Modeling Drying Process Using Semi-Theoretical and Empirical Models. Drying Technology, 24, 1637-1642. https://doi.org/10.1080/07373930601031463
[6]
Honoré, O.K., Francois, Z. and Hélène, D. (2019) Effect of Farm Product Intrinsic Properties on Convective Drying: Case of Okra. American Journal of Plant Sciences, 10, 101-110. https://doi.org/10.4236/ajps.2019.101009
[7]
Honoré, O.K., François, Z., Raguilignaba, S., Aboubacar, T. and Hélène, D. (2014) Characterization of Okra Convective Drying, Influence of Maturity. Food and Nutrition Sciences, 5, 590-597. https://doi.org/10.4236/fns.2014.56069
[8]
Fahloul, D., Benmadi, F. and Boudraa, S. (2009) Estimation de la diffusivité massique et cinétique de séchage sous vide de la pomme de terre (variété Spunta). Journal of Renewable Energies, 12, 655-665. https://doi.org/10.54966/jreen.v12i4.171
[9]
Ahouannou, C., Jannot, Y., Lips, B. and Lallemand, A. (2000) Caractérisation et modélisation du séchage de trois produits tropicaux : manioc, gingembre et gombo. Sciences des Aliments, 20, 413-432. https://doi.org/10.3166/sda.20.413-432
[10]
Honore, O.K., Abdou-Salam, G., Salam, I.A., Désiré, B. and François, Z. (2023) Validation of a Characteristics Dimensions for Transfers during Convective Drying of Sweet Potato Cubic, Cylindrical and Spherical Shapes. Open Journal of Applied Sciences, 13, 1714-1722. https://doi.org/10.4236/ojapps.2023.1310135
[11]
Ertekin, C. and Yaldiz, O. (2004) Drying of Eggplant and Selection of a Suitable Thin Layer Drying Model. Journal of Food Engineering, 63, 349-359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
[12]
Aghbashlo, M., kianmehr, M.H. and Samimi-Akhijahani, H. (2008) Influence of Drying Conditions on the Effective Moisture Diffusivity, Energy of Activation and Energy Consumption during the Thin-Layer Drying of Berberis Fruit (Berberidaceae). Energy Conversion and Management, 49, 2865-2871. https://doi.org/10.1016/j.enconman.2008.03.009
[13]
Honoré, O.K. (2013) Séchage des Produits Agroalimentaires: Influence de la Taille, de la Forme et de la Découpe. Master’s Thesis, Université de Ouagadougou.
[14]
Onwude, D.I., Hashim, N., Abdan, K., Janius, R. and Chen, G. (2018) Investigating the Influence of Novel Drying Methods on Sweet Potato (Ipomoeabatatas L.): Kinetics, Energy Consumption, Color, and Microstructure. Journal of Food Process Engineering, 41, e12686. https://doi.org/10.1111/jfpe.12686
[15]
Dabiré, R. and Belem, J. (2001) Plantes à Tubercules et Racines du Burkina Faso. WASNET News, 8, 12-16.
[16]
Ouoba, H., Zougmore, F., Naon, B. and Desmorieux, H. (2012) Profils des Teneurs en Eau de la Patate Douce Durant son Séchage Convectif. Revue du CAMES-Série A, 13, 201-205.
[17]
Idlimam, A., Ethmane Kane, C.S. and Kouhila, M. (2023) Single Layer Drying Behaviour of Grenade Peel in a Forced Convective Solar Dryer. Journal of Renewable Energies, 10, 191-203. https://doi.org/10.54966/jreen.v10i2.782
[18]
Velić, D., Planinić, M., Tomas, S. and Bilić, M. (2004) Influence of Airflow Velocity on Kinetics of Convection Apple Drying. Journal of Food Engineering, 64, 97-102. https://doi.org/10.1016/j.jfoodeng.2003.09.016
[19]
Belahmidi, E., Belghit, A., Mrani, A., Mir, A. and Kaoua, M. (1993) Approche Expérimentale de la Cinétique du Séchage des Produits Agro-alimentaires: Application aux Peaux d’oranges et à la Pulpe de Betterave. Revue générale de thermique, 32, 380-381.
[20]
AOAC (1990) Official Methods of Analysis. Association of Official Chemists, No.934-06.
[21]
Crank, J. (1979) The Mathematics of Diffusion. Oxford University Press.
[22]
Hashemi, G., Mowla, D. and Kazemeini, M. (2009) Moisture Diffusivity and Shrinkage of Broad Beans during Bulk Drying in an Inert Medium Fluidized Bed Dryer Assisted by Dielectric Heating. Journal of Food Engineering, 92, 331-338. https://doi.org/10.1016/j.jfoodeng.2008.12.004
[23]
Hassini, L., Azzouz, S., Peczalski, R. and Belghith, A. (2007) Estimation of Potato Moisture Diffusivity from Convective Drying Kinetics with Correction for Shrinkage. Journal of Food Engineering, 79, 47-56. https://doi.org/10.1016/j.jfoodeng.2006.01.025
[24]
Jason, A. (1958) A Study of Evaporation and Diffusion Processes in the Drying of Fish Muscle. Metchim Galati.
[25]
Madamba, P.S., Driscoll, R.H. and Buckle, K.A. (1996) The Thin-Layer Drying Characteristics of Garlic Slices. Journal of Food Engineering, 29, 75-97. https://doi.org/10.1016/0260-8774(95)00062-3
[26]
Diamante, L.M. and Munro, P.A. (1991) Mathematical Modelling of Hot Air Drying of Sweet Potato Slices. International Journal of Food Science & Technology, 26, 99-109. https://doi.org/10.1111/j.1365-2621.1991.tb01145.x
[27]
Abdou-Salam, G., Honore, O.K. and François, Z. (2020) Taking into Account the Complex Nature and the Intrinsic Parameters of Agro-Food. Journal of Biophysical Chemistry, 11, 1-13. https://doi.org/10.4236/jbpc.2020.111001
[28]
Honoré, O.K., Hélène, D. and François, Z. (2019) What Process Optimizes Convective Drying of Farm Products with Complex Constitution: Case of Okra (Abelmoschus esculentus). Journal of Agricultural Chemistry and Environment, 8, 14-22. https://doi.org/10.4236/jacen.2019.81002
[29]
Doymaz, İ. (2005) Drying Characteristics and Kinetics of Okra. Journal of Food Engineering, 69, 275-279. https://doi.org/10.1016/j.jfoodeng.2004.08.019
[30]
Doymaz, İ. (2004) Convective Air Drying Characteristics of Thin Layer Carrots. Journal of Food Engineering, 61, 359-364. https://doi.org/10.1016/s0260-8774(03)00142-0