Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis which has been implicated in many diseases state including non-communicable diseases. To achieve this, seven diets were formulated by restricting 60% of each macronutrient. These diets were fed on 42 albino rats (Wistar), divided into 7 groups of 6 rats each. Group 1 was fed on a normal laboratory chow diet (ND), group 2 received a fat-restricted diet (FRD), group 3 received a protein-restricted diet, (PFD), group 4 received a carbohydrate-restricted diet (CRD), group 5 received a protein and fat-restricted diet (PFRD), group 6 re-ceived a carbohydrate and fat-restricted diet (CFRD) and group 7 received a carbohydrate and protein-restricted diet (CPRD). Feed and water intake were given ad libitum and daily weight and food intake were recorded. The experiment went on for 4 weeks after which animals were sacrificed and intestinal content and blood were collected for analysis (gut microbial composition, glucose, insulin levels, serum lipid, and enzyme). Compared to the control group results showed a decrease in Bacteroides (40.50 - 14.00 CFU), HDL (68.20 - 40.40 mg/dl), and AST (66.62 - 64.74 U/L) in FRD. An increase in AST (66.6 - 69.43 U/L), Bifidobacterial (59.50 - 92.00 CFU) and decreased Bacteroides (40.5 - 19.5 CFU) for PRD was also recorded. CRD reduced Lactobacillus (73 - 33.5 CFU), total bacterial count (129 - 48 CFU), HDL (68.2 - 30.8 mg/dl), and cholesterol (121.44 - 88.65 mg/dl) whereas intestinal composition of E. coli (30.5 - 51.5 CFU) increased. PFRD increased Lactobacillus (73.00 - 102.5 CFU), Bifidobacterial (59.5 - 100 CFU), HDL (68.2 - 74.7 mg/dl), and Triglyceride (111.67 - 146.67 mg/dl) concentration. Meanwhile, a reduction in Bifidobacterial (59.5 - 41.5 CFU), and an increasing of AST (66.62 - 70.30 U/l) were recorded for CFRD. However, Bacteroides (40.5 69.5 CFU), LDL (30.95 - 41.98 mg/dl) increased and Bifidobacterial (59.5 - 38.00 CFU) and HDL (68.2 - 53.5 mg/dl) decreased for CPRD. This work, therefore, concludes that macronutrient restriction causes significant changes in serum marker and enzyme profile, and gut microbial composition which can cause gut dysbiosis and later on could expose the host to inflammatory diseases in the long run.
References
[1]
D’Argenio, V. (2018) Human Microbiome Acquisition and Bioinformatic Challenges in Meta-Genomic Studies. International Journal of Molecular Sciences, 19, Article 383. https://doi.org/10.3390/ijms19020383
[2]
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jørgensen, T., Brandslund, I., Nielsen, H.B., Juncker, A.S., Bertalan, M., Levenez, F. and Pedersen, O. (2013) Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature, 500, 541-546. https://doi.org/10.1038/nature12506
[3]
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R.J. and Turnbaugh, P.J. (2014) Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature, 505, 559-563. https://doi.org/10.1038/nature12820
[4]
Albenberg, L.G. and Wu, G.D. (2014) Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease. Gastroenterology, 146, 1564-1572. https://doi.org/10.1053/j.gastro.2014.01.058
[5]
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B., Massart, S., Collini, S., Pieraccini, G., and Lionetti, P. (2010) Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 14691-14696. https://doi.org/10.1073/pnas.1005963107
[6]
Hernandez, A.R., Kemp, K.M., Burke, S.N., Buford, T.W. and Carter, C.S. (2022) Influence of Aging, Macronutrient Composition and Time-Restricted Feeding on the Fischer344 x Brown Norway Rat Gut Microbiota. Nutrients, 14, Article 1758. https://doi.org/10.3390/nu14091758
[7]
Sbierski-Kind, J., Grenkowitz, S., Schlickeiser, S., Sandforth, A., Friedrich, M., Kunkel, D., Glauben, R., Brachs, S., Mai, K., Thürmer, A., Radonić, A., Drechsel, O., Turnbaugh, P.J., Bisanz, J.E., Volk, H.D., Spranger, J. and von Schwartzenberg, R.J. (2022) Effects of Caloric Restriction on the Gut Microbiome Are Linked with Immune Senescence. Microbiome, 10, Article No. 57. https://doi.org/10.1186/s40168-022-01249-4
[8]
Muntner, P., He, J., Astor, B.C., Folsom, A.R. and Coresh, J. (2005) Traditional and Nontraditional Risk Factors Predict Coronary Heart Disease in Chronic Kidney Disease: Results from the Atherosclerosis Risk in Communities Study. Journal of the American Society of Nephrology, 16, 529-538. https://doi.org/10.1681/ASN.2004080656
[9]
Johnson, A.J., Zheng J.J., Kang, J.W., Saboe, A., Knights, D. and Zivkovic, A.M. (2020) A Guide to Diet-Microbiome Study Design. Frontiers in Nutrition, 7, Article 79. https://doi.org/10.3389/fnut.2020.00079
[10]
Paris, J.M.G., Falkenberg, T., Nöthlings, U., Heinzel, C., Borgemeister, C. and Escobar, N. (2022) Changing Dietary Patterns Is Necessary to Improve the Sustainability of Western Diets from a One Health Perspective. The Science of the Total Environment, 811, Article 151437. https://doi.org/10.1016/j.scitotenv.2021.151437
[11]
Schwingshackl, L. and Hoffmann, G. (2013) Comparison of Effects of Long-Term Low-Fat vs High-Fat Diets on Blood Lipid Levels in Overweight or Obese Patients: A Systematic Review and Meta-Analysis. Journal of the Academy of Nutrition and Dietetics, 113, 1640-1661. https://doi.org/10.1016/j.jand.2013.07.010
[12]
Ramirez, J., Guarner, F., Bustos Fernandez, L., Maruy, A., Sdepanian, V.L. and Cohen, H. (2020) Antibiotics as Major Disruptors of Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 10, Article 572912. https://doi.org/10.3389/fcimb.2020.572912
[13]
Liu, X., Blouin, J., Santacruz, A., Lan, A., Andriamihaja, M., Wilkanowicz, S., et al. (2014) High-protein Diet Modifies Colonic Microbiota and Luminal Environment but Not Colonocyte Metabolism in the Rat Model: The Increased Luminal Bulk Connection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 307, G459-G470. https://doi.org/10.1152/ajpgi.00400.2013
[14]
Brehm, B.J., Seeley, R.J., Daniels, S.R. and D’Alessio, D.A. (2003) A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. The Journal of Clinical Endocrinology and Metabolism, 88, 1617-1623. https://doi.org/10.1210/jc.2002-021480
[15]
Bajwa, A., Tan, S.T., Mehta, R. and Bahreyni, B. (2013) Rapid Detection of Viable Microorganisms Based on a Plate Count Technique Using Arrayed Microelectrodes. Sensors, 13, 8188-8198. https://doi.org/10.3390/s130708188
[16]
Clarke, P.H. and Cowan, S.T. (1952) Biochemical Methods for Bacteriology. Journal of General Microbiology, 6, 187-197. https://doi.org/10.1099/00221287-6-1-2-187
[17]
Bucolo, G. and David, H. (1973) Quantitative Determination of Serum Triglycerides by the Use of Enzymes. Clinical Chemistry, 19, 476-482. https://doi.org/10.1093/clinchem/19.5.476
Tietz, N.W., et al. (1995) Clinical Guide to Laboratory Tests. 3rd Edition, AACC.
[20]
Murray, R. (1984) Alanine Aminotransferase. Kaplan A et al. Clin Chem The C.V. Mosby Co., St Louis, Toronto, Princeton, 1088-1090.
[21]
Harmsen, H.J., Wildeboer-Veloo, A.C., Raangs, G.C., Wagendorp, A.A., Klijn, N., Bindels, J.G. and Welling, G.W. (2000) Analysis of Intestinal Flora Development in Breast-Fed and Formula-Fed Infants by Using Molecular Identification and Detection Methods. Journal of Pediatric Gastroenterology and Nutrition, 30, 61-67. https://doi.org/10.1097/00005176-200001000-00019
[22]
Noakes, M., Keogh, J.B., Foster, P.R. and Clifton, P.M. (2005) Effect of an Energy-Restricted, High-Protein, Low-Fat Diet Relative to a Conventional High-Carbohydrate, Low-Fat Diet on Weight Loss, Body Composition, Nutritional Status, and Markers of Cardiovascular Health in Obese Women. The American Journal of Clinical Nutrition, 81, 1298-1306. https://doi.org/10.1093/ajcn/81.6.1298
[23]
Ludwig, D.S., Willett, W.C., Volek, J.S. and Neuhouser, M.L. (2018) Dietary Fat: From Foe to Friend? Science, 362, 764-770. https://doi.org/10.1126/science.aau2096
[24]
Westerterp-Plantenga, M.S., Nieuwenhuizen, A., Tomé, D., Soenen, S. and Westerterp, K.R. (2009) Dietary Protein, Weight Loss, and Weight Maintenance. Annual Review of Nutrition, 29, 21-41. https://doi.org/10.1146/annurev-nutr-080508-141056
[25]
Moon, J. and Koh, G. (2020) Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. Journal of Obesity & Metabolic Syndrome, 29, 166-173. https://doi.org/10.7570/jomes20028
[26]
Leidy, H.J., Armstrong, C.L., Tang, M., Mattes, R.D. and Campbell, W.W. (2010) The Influence of Higher Protein Intake and Greater Eating Frequency on Appetite Control in Overweight and Obese Men. Obesity, 18, 1725-1732. https://doi.org/10.1038/oby.2010.45
[27]
Solon-Biet, S.M., Mitchell, S.J., Coogan, S.C., Cogger, V.C., Gokarn, R., McMahon, A.C., Raubenheimer, D., de Cabo, R., Simpson, S.J. and Le Couteur, D.G. (2015) Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Reports, 11, 1529-1534. https://doi.org/10.1016/j.celrep.2015.05.007
[28]
Axen, K.V. and Axen, K. (2006) Very Low-Carbohydrate versus Isocaloric High-Carbohydrate Diet in Dietary Obese Rats. Obesity, 14, 1344-1352. https://doi.org/10.1038/oby.2006.152
[29]
Ble-Castillo, J.L., Aparicio-Trapala, M.A., Juárez-Rojop, I.E., Torres-Lopez, J.E., Mendez, J.D., et al. (2012) Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats. International Journal of Environmental Research and Public Health, 9, 1663-1676. https://doi.org/10.3390/ijerph9051663
[30]
Lundsgaard, A.M., Holm, J.B., Sjøberg, K.A., Bojsen-Møller, K.N., Myrmel, L.S., Fjære, E., Jensen, B.A.H., Nicolaisen, T.S., Hingst, J.R., Hansen, S.L., Doll, S., Geyer, P.E., Deshmukh, A.S., Holst, J.J., Madsen, L., Kristiansen, K., Wojtaszewski, J.F.P., Richter, E.A. and Kiens, B. (2019) Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 29, 50-63.E4. https://doi.org/10.1016/j.cmet.2018.08.022
[31]
Linn, T., Santosa, B., Grönemeyer, D., Aygen, S., Scholz, N., Busch, M. and Bretzel, R.G. (2000) Effect of Long-Term Dietary Protein Intake on Glucose Metabolism in Humans. Diabetologia, 43, 1257-1265. https://doi.org/10.1007/s001250051521
[32]
Wexler H.M. (2007) Bacteroides: The Good, the Bad, and the Nitty-Gritty. Clinical Microbiology Reviews, 20, 593-621. https://doi.org/10.1128/CMR.00008-07
[33]
Wilkins, T.D., Wagner, D.L., Veltri, B.J., Jr. and Gregory, E.M. (1978) Factors Affecting Production of Catalase by Bacteroides. Journal of Clinical Microbiology, 8, 553-557. https://doi.org/10.1128/jcm.8.5.553-557.1978
[34]
Biavati, B., Castagnoli, P., and Trovatelli, L.D. (1986) Species of the Genus Bifidobacterium in the Feces of Human Adults. Microbiologica, 9, 39-45.
[35]
Holt-Harris, J.E. and Teague, O. (2016) A New Culture Medium for the Isolation of Bacillus Typhosus from Stools. The Journal of Infectious Diseases, 18, 596-600. https://doi.org/10.1093/infdis/18.6.596
[36]
Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P.I., Godneva, A., Kalka, I.N., Bar, N., Shilo, S., Lador, D., Vila, A.V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B.C., Avnit-Sagi, T. and Segal, E. (2018) Environment Dominates over Host Genetics in Shaping Human Gut Microbiota. Nature, 555, 210-215. https://doi.org/10.1038/nature25973
[37]
Matsumoto, K., Takada, T., Shimizu, K., Moriyama, K., Kawakami, K., Hirano, K., Kajimoto, O. and Nomoto, K. (2010) Effects of a Probiotic Fermented Milk Beverage Containing Lactobacillus casei strain Shirota on Defecation Frequency, Intestinal Microbiota, and the Intestinal Environment of Healthy Individuals with Soft Stools. Journal of Bioscience and Bioengineering, 110, 547-552. https://doi.org/10.1016/j.jbiosc.2010.05.016
[38]
He, T., Priebe, M.G., Zhong, Y., Huang, C., Harmsen, H.J., Raangs, G.C., Antoine, J.M., Welling, G.W. and Vonk, R.J. (2008) Effects of Yogurt and Bifidobacteria Supplementation on the Colonic Microbiota in Lactose-Intolerant Subjects. Journal of Applied Microbiology, 104, 595-604.
[39]
Zhong, Y., Huang, C.Y., He, T. and Harmsen, H.M. (2006) Effect of probiotics and yogurt on colonic microflora in subjects with lactose intolerance. Journal of Hygiene Research, 35, 587-591.
[40]
Rodriguez, N.R. and Miller, S.L. (2015) Effective Translation of Current Dietary Guidance: Understanding and Communicating the Concepts of Minimal and Optimal Levels of Dietary Protein. The American Journal of Clinical Nutrition, 101, 1353S-1358S. https://doi.org/10.3945/ajcn.114.084095
[41]
Nordmann, P., Mariotte, S., Naas, T., Labia, R. and Nicolas, M.H. (1993) Biochemical Properties of a Carbapenem-Hydrolyzing Beta-Lactamase from Enterobacter Cloacae and Cloning of the Gene into Escherichia coli. Antimicrobial Agents and Chemotherapy, 37, 939-946. https://doi.org/10.1128/aac.37.5.939
[42]
Wei, W., Wang, S., Xu, C., Zhou, X., Lian, X., He, L., et al. (2022) Gut Microbiota, Pathogenic Proteins and Neurodegenerative Diseases. Frontiers in Microbiology, 13, Article 959856. https://doi.org/10.3389/fmicb.2022.959856
[43]
Wu, G. (2016) Dietary Protein Intake and Human Health. Food & Function, 7, 1251-1265. https://doi.org/10.1039/c5fo01530h
[44]
Mu, C., Yang, Y., Luo, Z. and Zhu, W. (2017) Temporal Microbiota Changes of High-Protein Diet Intake in a Rat Model. Anaerobe, 47, 218-225. https://doi.org/10.1016/j.anaerobe.2017.06.003
[45]
Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in endocrinology, 11, Article 25. https://doi.org/10.3389/fendo.2020.00025
[46]
Vijay, N. and Morris, M.E. (2014) Role of Monocarboxylate Transporters in Drug Delivery to the Brain. Current Pharmaceutical Design, 20, 1487-1498. https://doi.org/10.2174/13816128113199990462
[47]
Schönfeld, P. and Wojtczak, L. (2016) Short and Medium-Chain Fatty Acids in Energy Metabolism: The Cellular Perspective. Journal of Lipid Research, 57, 943-954. https://doi.org/10.1194/jlr.R067629
[48]
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F.D. and Lewis, J.D. (2011) Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 334, 105-108. https://doi.org/10.1126/science.1208344
[49]
Drasar, B.S., Crowther, J.S., Goddard, P., Hawksworth, G., Hill, M.J., Peach, S., Williams, R.E. and Renwick, A. (1973) The Relation between Diet and the Gut Microflora in Man. The Proceedings of the Nutrition Society, 32, 49-52. https://doi.org/10.1079/PNS19730014
[50]
Murphy, E.F., Cotter, P.D., Healy, S., Marques, T.M., O’Sullivan, O., Fouhy, F., Clarke, S.F., O’Toole, P.W., Quigley, E.M., Stanton, C., Ross, P.R., O’Doherty, R.M. and Shanahan, F. (2010) Composition and Energy Harvesting Capacity of the Gut Microbiota: Relationship to Diet, Obesity and Time in Mouse Models. Gut, 59, 1635-1642. https://doi.org/10.1136/gut.2010.215665
[51]
Lecomte, V., Kaakoush, N.O., Maloney, C.A., Raipuria, M., Huinao, K.D., Mitchell, H.M. and Morris, M.J. (2015) Changes in Gut Microbiota in Rats Fed a High Fat Diet Correlate with Obesity-Associated Metabolic Parameters. PLOS ONE, 10, e0126931. https://doi.org/10.1371/journal.pone.0126931
[52]
Hu, T., Mills, K.T., Yao, L., Demanelis, K., Eloustaz, M., Yancy Jr., W.S., Kelly, T. N., He, J. and Bazzano, L.A. (2012) Effects of Low-Carbohydrate Diets versus Low-Fat Diets on Metabolic Risk Factors: A Meta-Analysis of Randomized Controlled Clinical Trials. American journal of Epidemiology, 176, S44-S54. https://doi.org/10.1093/aje/kws264
[53]
Bazzano, L.A., Hu, T., Reynolds, K., Yao, L., Bunol, C., Liu, Y., Chen, C.S., Klag, M.J., Whelton, P.K. and He, J. (2014) Effects of Low-Carbohydrate and Low-Fat Diets: A Randomized Trial. Annals of Internal Medicine, 161, 309-318. https://doi.org/10.7326/M14-0180
[54]
Cardillo, S., Seshadri, P. and Iqbal, N. (2006) The Effects of a Low-Carbohydrate versus Low-Fat Diet on Adipocytokines in Severely Obese Adults: Three-Year Follow-Up of a Randomized Trial. European Review for Medical and Pharmacological Sciences, 10, 99-106.
[55]
Ma, Y., Li, Y., Chiriboga, D.E., Olendzki, B.C., Hebert, J.R., Li, W., Leung, K., Hafner, A.R. and Ockene, I.S. (2006) Association between Carbohydrate Intake and Serum Lipids. Journal of the American College of Nutrition, 25, 155-163. https://doi.org/10.1080/07315724.2006.10719527
[56]
Ruottinen, S., Rönnemaa, T., Niinikoski, H., Lagström, H., Saarinen, M., Pahkala, K., Kaitosaari, T., Viikari, J. and Simell, O. (2009) Carbohydrate Intake, Serum Lipids and Apolipoprotein E Phenotype Show Association in Children. Acta Paediatrica, 98, 1667-1673. https://doi.org/10.1111/j.1651-2227.2009.01399.x
[57]
Parks E.J. (2001) Effect of Dietary Carbohydrate on Triglyceride Metabolism in Humans. The Journal of Nutrition, 131, 2772S–2774S. https://doi.org/10.1093/jn/131.10.2772S
[58]
Siri, P.W. and Krauss, R.M. (2005) Influence of Dietary Carbohydrate and Fat on LDL and HDL Particle Distributions. Current Atherosclerosis Reports, 7, 455-459. https://doi.org/10.1007/s11883-005-0062-9
[59]
Lichtenstein, A.H., Ausman, L.M., Carrasco, W., Jenner, J.L., Ordovas, J.M. and Schaefer, E.J. (1994) Short-Term Consumption of a Low-Fat Diet Beneficially Affects Plasma Lipid Concentrations Only When Accompanied by Weight Loss. Hypercholesterolemia, Low-Fat Diet, and Plasma Lipids. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 14, 1751-1760. https://doi.org/10.1161/01.ATV.14.11.1751
[60]
Kalaivanisailaja, J., Manju, V. and Nalini, N. (2003) Lipid Profile in Mice Fed a High-Fat Diet after Exogenous Leptin Administration. Polish Journal of Pharmacology, 55, 763-769.
[61]
Bruna, M., Gumbau, V., Guaita, M., Canelles, E., Mulas, C., Basés, C., et al. (2014) Prospective Study of Gluco-Lipidic Hormone and Peptide Levels in Morbidly Obese Patients after Sleeve Gastrectomy. Cirugía Española (English Edition), 92, 175-181. https://doi.org/10.1016/j.cireng.2013.07.027
[62]
Fontes, B.C., Anjos, J.S. D., Black, A.P., Moreira, N.X. and Mafra, D. (2018) Effects of Low-Protein Diet on Lipid and Anthropometric Profiles of Patients with Chronic Kidney Disease on Conservative Management. Journal Brasileiro de Nefrologia, 40, 225-232. https://doi.org/10.1590/2175-8239-jbn-3842
[63]
Luna-Castillo, K.P., Olivares-Ochoa, X.C., Hernández-Ruiz, R.G., Llamas-Covarrubias, I.M., Rodríguez-Reyes, S.C., Betancourt-Núñez, A., Vizmanos, B., Martínez-López, E., Muñoz-Valle, J.F., Márquez-Sandoval, F. and López-Quintero, A. (2022) The Effect of Dietary Interventions on Hypertriglyceridemia: From Public Health to Molecular Nutrition Evidence. Nutrients, 14, Article 1104. https://doi.org/10.3390/nu14051104
[64]
Purkins, L., Love, E.R., Eve, M.D., Wooldridge, C.L., Cowan, C., Smart, T.S., Johnson, P.J. and Rapeport, W.G. (2004) The Influence of Diet upon Liver Function Tests and Serum Lipids in Healthy Male Volunteers Resident in a Phase I Unit. British Journal of Clinical Pharmacology, 57, 199-208. https://doi.org/10.1046/j.1365-2125.2003.01969.x
[65]
Welch-White, V., Dawkins, N., Graham, T. and Pace, R. (2013) The Impact of High Fat Diets on Physiological Changes in Euthyroid and Thyroid Altered Rats. Lipids in Health and Disease, 12, Article No. 100. https://doi.org/10.1186/1476-511X-12-100
[66]
Faye, B., Bengoumi, M., Faye, B. and Bengoumi, M. (2018) Clinical Enzymology. In: Camel Clinical Biochemistry and Hematology, Springer, 123-172. https://doi.org/10.1007/978-3-319-95562-9_5
[67]
Zhou, Y., Ding, Y.L., Zhang, J.L., Zhang, P., Wang, J.Q. and Li, Z.H. (2018) Alpinetin Improved High Fat Diet-Induced Non-Alcoholic Fatty Liver Disease (NAFLD) through Improving Oxidative Stress, Inflammatory Response and Lipid Metabolism. Biomedicine & Pharmacotherapy, 97, 1397-1408. https://doi.org/10.1016/j.biopha.2017.10.035