全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrogeochemical Characterization of Aquifer Systems and Surface Water/Groundwater Relations in the Lower Senegal River Valley

DOI: 10.4236/gep.2024.126014, PP. 232-254

Keywords: Senegal River Valley, Groundwater, Pollution, Agriculture, Alluvial Aquifer

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed using classical geochemical interpretation diagrams (Piper, GIBBS, etc.) and multivariate geostatistical analyses, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results revealed three types of facies: Ca-Mg-HCO3-type facies, characteristic of poorly mineralized waters such as surface waters and groundwater from dune formations and the alluvial plain close to the hydraulic axis; Na-Cl type facies associated with well waters located in the alluvial plain that tap Inchirian or Nouakchottian shallow reservoirs and Maastrichtian deep borehole waters; and mixed Ca-Cl and Na-HCO3 type facies observed in certain floodplain and dune reservoirs. The results showed a strong correlation between sodium, chlorides, bromides, and electrical conductivity, indicating a significant contribution of these ions to groundwater mineralization. The various sources of water mineralization include mixing processes between surface water or rainwater, or calcite or dolomite dissolution processes (for weakly mineralized waters), basic exchanges or inverse basic exchanges between the aquifer and the water table (for moderately mineralized waters), and evaporation processes, halite dissolution, and paleosalinity during periods of marine transgression and regression (for highly mineralized waters). The study also highlighted the high vulnerability of the alluvial aquifer to pollution from intensive irrigated agriculture, as significant quantities of sulfates and nitrates were measured in some samples. These results also highlight the importance of water quality management in the Lower Senegal Valley, particularly as concerns the protection of the alluvial aquifer against pollution from irrigated agriculture.

References

[1]  Abdul-Wahab, D., Gibrilla, A., Adomako, D., Adotey, D. K., Ganyaglo, S., Laar, C. et al. (2022). Application of Geostatistical Techniques to Assess Groundwater Quality in the Lower Anayari Catchment in Ghana. HydroResearch, 5, 35-47.
https://doi.org/10.1016/j.hydres.2022.04.001
[2]  Abid, K., Zouari, K., Dulinski, M., Chkir, N., & Abidi, B. (2010). Hydrologic and Geologic Factors Controlling Groundwater Geochemistry in the Turonian Aquifer (Southern Tunisia). Hydrogeology Journal, 19, 415-427.
https://doi.org/10.1007/s10040-010-0668-z
[3]  Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-Affected Soils and Their Management (Vol. 39). Food & Agriculture Organization.
[4]  Alcalá, F. J., & Custodio, E. (2008). Using the Cl/br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal. Journal of Hydrology, 359, 189-207.
https://doi.org/10.1016/j.jhydrol.2008.06.028
[5]  Appelo, C. A. J., & Postma, D. (2005). Geochemistry, Groundwater and Pollution, 2nd Edition.
https://www.crcpress.com/Geochemistry-Groundwater-and-Pollution-Second-Edition/Appelo-Postma-Appelo-Postma/p/book/9780415364218
[6]  Audibert, M. (1970). Delta du fleuve Sénégal Etude hydrogéologique Projet Hydroagricole du bassin du fleuve Sénégal. Rapport Projet AFR-REG-61.
[7]  Belkhiri, L., & Narany, T. S. (2015). Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality. Water Resources Management, 29, 2073-2089.
https://doi.org/10.1007/s11269-015-0929-7
[8]  Bellion, Y., & Debenay, J. P. (1986). Le bassin sédimentaire Sénégalo-Mauritanien, présentation générale. In M. Diao (Ed.), Etude des aquifères alluviaux de la vallée du fleuve Sénégal (secteur rosso-dagana-lac de guiers).
[9]  Blaisdell, J., Turyk, M. E., Almberg, K. S., Jones, R. M., & Stayner, L. T. (2019). Prenatal Exposure to Nitrate in Drinking Water and the Risk of Congenital Anomalies. Environmental Research, 176, Article ID: 108553.
https://doi.org/10.1016/j.envres.2019.108553
[10]  Boivin, P., Brunet, D., Gascuel-Odoux, C., Zante, P., & Ndiaye, J. P. (1995). Les sols argileux de la région de Nianga-Podor: répartition, caractéristiques, aptitudes et risques de dégradation sous irrigation. ORSTOM.
[11]  Boivin, P., Favre, F., Hammecker, C., Maeght, J. L., Delarivière, J., Poussin, J. C. et al. (2002). Processes Driving Soil Solution Chemistry in a Flooded Rice-Cropped Vertisol: Analysis of Long-Time Monitoring Data. Geoderma, 110, 87-107.
https://doi.org/10.1016/s0016-7061(02)00226-4
[12]  Bouderbala, A., & Gharbi, B. Y. (2017). Hydrogeochemical Characterization and Groundwater Quality Assessment in the Intensive Agricultural Zone of the Upper Cheliff Plain, Algeria. Environmental Earth Sciences, 76, Article No. 744.
https://doi.org/10.1007/s12665-017-7067-x
[13]  Bruckmann, L. (2016). L’intégration des zones inondables dans la gestion de l’eau et le développement de l’irrigation d’une vallée fluviale sahélienne. Master’s Thesis, Université Paris Diderot.
[14]  Camara, A. (2018). Dynamique de l’occupation du sol et caractérisation de la chimie des eaux dans le delta du fleuve Sénégal. Master’s Thesis, Cheikh Anta Diop University.
[15]  Da Boit, M. (1993). Impact des aménagements hydroagricoles sur la nappe superficielle de la basse vallée du fleuve Sénégal (Thiagar, Richard-Toll, Dagana). DEA Géologie appliquée-Hydrogéologie. FST-UCAD. 94 p.
[16]  Dacosta, H., Kandia, K. Y., & Malou, R. (2002). La variabilité spatio-temporelle des précipitations au Sénégal depuis un siècle (pp. 499-506). IAHS-AISH Publication.
[17]  Davis, S. N., Fabryka-Martin, J., & Wolfsberg, L. E. (2004). Variations of Bromide in Potable Ground Water in the United States. Ground Water, 42, 902-909.
https://doi.org/10.1111/j.1745-6584.2004.t01-8-.x
[18]  Davis, S. N., Whittemore, D. O., & Fabryka-Martin, J. (1998). Uses of Chloride/Bromide ratios in Studies of Potable Water. Ground Water, 36, 338-350.
https://doi.org/10.1111/j.1745-6584.1998.tb01099.x
[19]  Deckers, J. E. A. N., Raes, D., Ceuppens, J., De Wachter, I., Merckx, R., & Diallo, A. (1996). Evolution de l’acidite dans les sols du delta du fleuve Senegal sous l’influence anthropogene [sols acides sulfates]. Etude et Gestion des Sols, 3, 151-166.
[20]  Diagana, A. (1990). Etude des paramètres hydrodynamiques des aquifères de la basse vallée du Sénégal. entre Saint-Louis et Podor (p. 62). Mémoire de DEA hydrogéologie. Fac. Des Sciences. Univ. C. A. Diop de Dakar.
[21]  Diagana, A. (1994). Études hydrogéologiques dans la vallée du fleuve Sénégal de Bakel à Podor: relations eaux de surface/eaux souterraines. Master’s Thesis, Cheikh Anta Diop University.
[22]  Diaw, M. (2008). Approche hydrochimique et isotopique de la relation eau de surface/nappe et du mode de recharge dans l’estuaire et la basse vallée du fleuve Sénégal. Master’s Thesis, Cheikh Anta Diop University.
[23]  Diaw, M. (2019). Etude du fonctionnement hydrogéochimique des eaux de surface et des nappes superficielles du delta et de la basse vallée du fleuve Sénégal: Apports des outils géochimiques, isotopiques, des analyses statistiques et des SIG. Ph.D. Thesis, Université Cheikh Anta Diop.
[24]  Diop, D. (2008). Accès à l’eau et agriculture dans la vallée du fleuve Sénégal. GESTES.
[25]  Elwood, J. M., & van der Werf, B. (2022). Nitrates in Drinking Water and Cancers of the Colon and Rectum: A Meta-Analysis of Epidemiological Studies. Cancer Epidemiology, 78, Article ID: 102148.
https://doi.org/10.1016/j.canep.2022.102148
[26]  Fontes, J. C., & Matray, J. M. (1993). Geochemistry and Origin of Formation Brines from the Paris Basin, France. Chemical Geology, 109, 177-200.
https://doi.org/10.1016/0009-2541(93)90069-u
[27]  Geurts, J. J. M., Sarneel, J. M., Willers, B. J. C., Roelofs, J. G. M., Verhoeven, J. T. A., & Lamers, L. P. M. (2009). Interacting Effects of Sulphate Pollution, Sulphide Toxicity and Eutrophication on Vegetation Development in Fens: A Mesocosm Experiment. Environmental Pollution, 157, 2072-2081.
https://doi.org/10.1016/j.envpol.2009.02.024
[28]  Gibbs, R. J. (1970). Mechanisms Controlling World Water Chemistry. Science, 170, 1088-1090.
https://doi.org/10.1126/science.170.3962.1088
[29]  Gning, A. A. (2015). Etude et Modélisation Hydrogéologique des Interactions Eaux de Surface-Eaux Souterraines dans un Contexte d’Agriculture Irriguée dans le Delta du Fleuve Sénégal. Master’s Thesis, Université de Liège.
https://orbi.uliege.be/handle/2268/179594
[30]  Güler, C., & Thyne, G. D. (2004). Delineation of Hydrochemical Facies Distribution in a Regional Groundwater System by Means of Fuzzy c‐Means Clustering. Water Resources Research, 40, W12503.
https://doi.org/10.1029/2004wr003299
[31]  Güler, C., Thyne, G. D., McCray, J. E., & Turner, K. A. (2002). Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10, 455-474.
https://doi.org/10.1007/s10040-002-0196-6
[32]  Helstrup, T., Jørgensen, N. O., & Banoeng-Yakubo, B. (2007). Investigation of Hydrochemical Characteristics of Groundwater from the Cretaceous-Eocene Limestone Aquifer in Southern Ghana and Southern Togo Using Hierarchical Cluster Analysis. Hydrogeology Journal, 15, 977-989.
https://doi.org/10.1007/s10040-007-0165-1
[33]  Hem, J. D. (1992). Study and Interpretation of Chemical Characteristics of Natural Water (3rd ed.). USGS Water-Supply Paper.
[34]  Herczeg, A. L., Dogramaci, S. S., & Leaney, F. W. J. (2001). Origin of Dissolved Salts in a Large, Semi-Arid Groundwater System: Murray Basin, Australia. Marine and Freshwater Research, 52, 41-52.
https://doi.org/10.1071/mf00040
[35]  Husson, F., Le, S., & Pagès, J. (2017). Exploratory Multivariate Analysis by Example Using R (2nd ed.). Chapman and Hall/CRC.
https://doi.org/10.1201/b21874.
[36]  Illy, P. (1973). Étude hydrogéologique de la vallée du fleuve Sénégal. Projet hydro agricole du bassin du fleuve Sénégal. Rapport RAF/65061.
[37]  Le Brusq, J. Y. (1980). Etude pédologique des cuvettes de la vallée du Lampsar. Institut Français de Recherche Scientifique pour le Développement en Cooperation (ORSTOM).
[38]  Lei, Y., Liu, Y., Sun, Z., Zou, C., Ma, R., Yin, L. et al. (2023). Influences of Paleoclimatic Environment and Hydrogeochemical Evolution on Groundwater Salinity in an Arid Inland Plain in Northwestern China. Applied Geochemistry, 154, Article ID: 105688.
https://doi.org/10.1016/j.apgeochem.2023.105688
[39]  Loyer, J. Y. (1989). Les sols salés de la basse vallée du fleuve Sénégal: Caractérisation, distribution et évolution sous cultures. ORSTOM.
[40]  Loyer, J. Y., Mougenot, B., & Zante, P. (1986). Changements récents induits par l’intervention humaine sur les sols de la basse vallée du fleuve Sénégal. ORSTOM.
[41]  Man, K., Ma, Z. M., & Xu, X. J. (2014). Research on the Mechanism of Sulfate Pollution of Groundwater in Jiaozuo Area. Applied Mechanics and Materials, 665, 436-439.
https://doi.org/10.4028/www.scientific.net/amm.665.436
[42]  Meybeck, M. (2003). Global Analysis of River Systems: From Earth System Controls to Anthropocene Syndromes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 1935-1955.
https://doi.org/10.1098/rstb.2003.1379
[43]  Michel, P. (1973). Les bassins des fleuves Sénégal et Gambie. Etude géomorphologique. ORSTOM.
[44]  Moussa, A. B., Mzali, H., Elmejri, H., & Bel Haj Salem, S. (2019). Apport des outils hydrogéochimiques à l’évaluation de la qualité et l’aptitude des eaux souterraines à l’irrigation: Cas de la nappe phréatique de la basse vallée de Medjerda, Tunisie Nord-Orientale. La Houille Blanche, 105, 35-44.
https://doi.org/10.1051/lhb/2019053
[45]  Ngom, D. F. (2013). Variabilité climatique au Sénégal et évolution des ressources en eau dans le delta du fleuve Sénégal sous influence anthropique. Ph.D. Thesis, Cheikh Anta Diop University.
[46]  OMVS (1972). Etude hydroagricole de la vallée du Sénégal Reconnaissance hydrogéologique: Rapport Projet. FAO.
[47]  Palmer, C. D., & Cherry, J. A. (1984). Geochemical Evolution of Groundwater in Sequences of Sedimentary Rocks. Journal of Hydrology, 75, 27-65.
https://doi.org/10.1016/0022-1694(84)90045-3
[48]  Piper, A. M. (1953). A Graphic Procedure in the Geochemical Interpretation of Water Analysis, vol. 12. United States Geological Survey Groundwater Note.
[49]  Qi, S., Feng, Q., Shu, H., Liu, W., Zhu, M., Zhang, C. et al. (2023). Redistribution Effect of Irrigation on Shallow Groundwater Recharge Source Contributions in an Arid Agricultural Region. Science of the Total Environment, 865, Article ID: 161106.
https://doi.org/10.1016/j.scitotenv.2022.161106
[50]  R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
http://www.R-project.org
[51]  Roger, J., Duvail, C., Barusseau, J. P., Noel, B. J., Nehlig, P., & Serrano, O. (2009b). Carte géologique du Sénégal à 1/500,000, feuilles nord-ouest, nord-est et sud-ouest. Ministère des Mines, de l’Industrie et des PME, Direction des Mines et de la Géologie.
[52]  Roger, J., Noel, B. J., Barusseau, J. P., Serrano, O., Nehlig, P., & Duvail, C. (2009a). Notice explicative de la carte géologique du Sénégal à 1/500,000, feuilles nord-ouest, nord-est et sud-ouest. Ministère des Mines, de l’Industrie et des PME, Direction des Mines et de la Géologie.
[53]  SAED (2021). Douzième Lettre de Mission de la SAED 2018-2020.
[54]  Saos, J. L., & Zante, P. (1985). Le “bouchon-barrage” de Kheune, son influence sur les eaux de la nappe alluviale et du fleuve Sénégal. ORSTOM.
[55]  Soucek, D. J., & Kennedy, A. J. (2005). Effects of Hardness, Chloride, and Acclimation on the Acute Toxicity of Sulfate to Freshwater Invertebrates. Environmental Toxicology and Chemistry, 24, 1204-1210.
https://doi.org/10.1897/04-142.1
[56]  Stetzenbach, K. J., Hodge, V. F., Guo, C., Farnham, I. M., & Johannesson, K. H. (2001). Geochemical and Statistical Evidence of Deep Carbonate Groundwater within Overlying Volcanic Rock Aquifers/Aquitards of Southern Nevada, USA. Journal of Hydrology, 243, 254-271.
https://doi.org/10.1016/s0022-1694(00)00418-2
[57]  Travi, Y. (1993). Hydrogéologie et hydrochimie des aquifères du Sénégal. Hydrogéochimie du fluor dans les eaux souterraines. Institut de Géologie—Université Louis-Pasteur.
[58]  Tweed, S., Leblanc, M., Cartwright, I., Favreau, G., & Leduc, C. (2011). Arid Zone Groundwater Recharge and Salinisation Processes; An Example from the Lake Eyre Basin, Australia. Journal of Hydrology, 408, 257-275.
https://doi.org/10.1016/j.jhydrol.2011.08.008
[59]  Usunoff, E. J., & Guzmán‐Guzmán, A. (1989). Multivariate Analysis in Hydrochemistry: An Example of the Use of Factor and Correspondence Analyses. Groundwater, 27, 27-34.
https://doi.org/10.1111/j.1745-6584.1989.tb00004.x
[60]  van Lavieren, L. P., & van Wetten, J. C. J. (1988). Profil de l’environnement de la vallée du fleuve Sénégal (No. 1988-3). RIN.
[61]  Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244.
https://doi.org/10.1080/01621459.1963.10500845
[62]  Ward, M. H., deKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T. et al. (2005). Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs. Environmental Health Perspectives, 113, 1607-1614.
https://doi.org/10.1289/ehp.8043
[63]  WHO (2014). Guidelines for Drinking-Water Quality. WHO Chronicle, 38, 104-108.
[64]  Wu, J., Cheng, S., He, L., Wang, Y., Yue, Y., Zeng, H. et al. (2023). Assessing Water Quality in the Pearl River for the Last Decade Based on Clustering: Characteristic, Evolution and Policy Implications. Water Research, 244, Article ID: 120492.
https://doi.org/10.1016/j.watres.2023.120492
[65]  Zhang, J., Zhou, J., Zhou, Y., Zeng, Y., Ji, Y., Sun, Y. et al. (2021). Hydrogeochemical Characteristics and Groundwater Quality Assessment in the Plain Area of Yarkant River Basin in Xinjiang, P.R. China. Environmental Science and Pollution Research, 28, 31704-31716.
https://doi.org/10.1007/s11356-021-12851-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133