This study assesses the chemical quality of water resources in the Lower Senegal River valley, based on 35 samples collected in November 2022. Major ion concentrations in surface water and groundwater were analyzed using classical geochemical interpretation diagrams (Piper, GIBBS, etc.) and multivariate geostatistical analyses, including hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results revealed three types of facies: Ca-Mg-HCO3-type facies, characteristic of poorly mineralized waters such as surface waters and groundwater from dune formations and the alluvial plain close to the hydraulic axis; Na-Cl type facies associated with well waters located in the alluvial plain that tap Inchirian or Nouakchottian shallow reservoirs and Maastrichtian deep borehole waters; and mixed Ca-Cl and Na-HCO3 type facies observed in certain floodplain and dune reservoirs. The results showed a strong correlation between sodium, chlorides, bromides, and electrical conductivity, indicating a significant contribution of these ions to groundwater mineralization. The various sources of water mineralization include mixing processes between surface water or rainwater, or calcite or dolomite dissolution processes (for weakly mineralized waters), basic exchanges or inverse basic exchanges between the aquifer and the water table (for moderately mineralized waters), and evaporation processes, halite dissolution, and paleosalinity during periods of marine transgression and regression (for highly mineralized waters). The study also highlighted the high vulnerability of the alluvial aquifer to pollution from intensive irrigated agriculture, as significant quantities of sulfates and nitrates were measured in some samples. These results also highlight the importance of water quality management in the Lower Senegal Valley, particularly as concerns the protection of the alluvial aquifer against pollution from irrigated agriculture.
References
[1]
Abdul-Wahab, D., Gibrilla, A., Adomako, D., Adotey, D. K., Ganyaglo, S., Laar, C. et al. (2022). Application of Geostatistical Techniques to Assess Groundwater Quality in the Lower Anayari Catchment in Ghana. HydroResearch, 5, 35-47. https://doi.org/10.1016/j.hydres.2022.04.001
[2]
Abid, K., Zouari, K., Dulinski, M., Chkir, N., & Abidi, B. (2010). Hydrologic and Geologic Factors Controlling Groundwater Geochemistry in the Turonian Aquifer (Southern Tunisia). Hydrogeology Journal, 19, 415-427. https://doi.org/10.1007/s10040-010-0668-z
[3]
Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988).Salt-Affected Soils and Their Management (Vol. 39). Food & Agriculture Organization.
[4]
Alcalá, F. J., & Custodio, E. (2008). Using the Cl/br Ratio as a Tracer to Identify the Origin of Salinity in Aquifers in Spain and Portugal. Journal of Hydrology, 359, 189-207. https://doi.org/10.1016/j.jhydrol.2008.06.028
[5]
Appelo, C. A. J., & Postma, D. (2005). Geochemistry, Groundwater and Pollution, 2nd Edition. https://www.crcpress.com/Geochemistry-Groundwater-and-Pollution-Second-Edition/Appelo-Postma-Appelo-Postma/p/book/9780415364218
[6]
Audibert, M. (1970). Delta du fleuveSénégal Etude hydrogéologiqueProjetHydroagricole du bassin du fleuveSénégal.Rapport Projet AFR-REG-61.
[7]
Belkhiri, L., & Narany, T. S. (2015). Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality. Water Resources Management, 29, 2073-2089. https://doi.org/10.1007/s11269-015-0929-7
[8]
Bellion, Y., & Debenay, J. P. (1986). Le bassin sédimentaire Sénégalo-Mauritanien, présentation générale. In M. Diao (Ed.), Etude des aquifèresalluviaux de la vallée du fleuveSénégal (secteurrosso-dagana-lac de guiers).
[9]
Blaisdell, J., Turyk, M. E., Almberg, K. S., Jones, R. M., & Stayner, L. T. (2019). Prenatal Exposure to Nitrate in Drinking Water and the Risk of Congenital Anomalies. Environmental Research, 176, Article ID: 108553. https://doi.org/10.1016/j.envres.2019.108553
[10]
Boivin, P., Brunet, D., Gascuel-Odoux, C., Zante, P., & Ndiaye, J. P. (1995). Les sols argileux de la région de Nianga-Podor: répartition, caractéristiques, aptitudes etrisques de dégradationsous irrigation. ORSTOM.
[11]
Boivin, P., Favre, F., Hammecker, C., Maeght, J. L., Delarivière, J., Poussin, J. C. et al. (2002). Processes Driving Soil Solution Chemistry in a Flooded Rice-Cropped Vertisol: Analysis of Long-Time Monitoring Data. Geoderma, 110, 87-107. https://doi.org/10.1016/s0016-7061(02)00226-4
[12]
Bouderbala, A., & Gharbi, B. Y. (2017). Hydrogeochemical Characterization and Groundwater Quality Assessment in the Intensive Agricultural Zone of the Upper Cheliff Plain, Algeria. Environmental Earth Sciences, 76, Article No. 744. https://doi.org/10.1007/s12665-017-7067-x
[13]
Bruckmann, L. (2016). L’intégration des zones inondablesdans la gestion de l’eauet le développement de l’irrigationd’unevalléefluvialesahélienne.Master’s Thesis, Université Paris Diderot.
[14]
Camara, A. (2018). Dynamique de l’occupation du sol etcaractérisation de la chimie des eauxdans le delta du fleuveSénégal. Master’s Thesis, Cheikh Anta Diop University.
[15]
Da Boit, M. (1993). Impact des aménagementshydroagricolessur la nappesuperficielle de la bassevallée du fleuveSénégal (Thiagar, Richard-Toll, Dagana).DEA Géologie appliquée-Hydrogéologie. FST-UCAD. 94 p.
[16]
Dacosta, H., Kandia, K. Y., & Malou, R. (2002). La variabilitéspatio-temporelle des précipitations au Sénégaldepuisun siècle (pp. 499-506). IAHS-AISH Publication.
[17]
Davis, S. N., Fabryka-Martin, J., & Wolfsberg, L. E. (2004). Variations of Bromide in Potable Ground Water in the United States. Ground Water, 42, 902-909. https://doi.org/10.1111/j.1745-6584.2004.t01-8-.x
[18]
Davis, S. N., Whittemore, D. O., & Fabryka-Martin, J. (1998). Uses of Chloride/Bromide ratios in Studies of Potable Water. Ground Water, 36, 338-350. https://doi.org/10.1111/j.1745-6584.1998.tb01099.x
[19]
Deckers, J. E. A. N., Raes, D., Ceuppens, J., De Wachter, I., Merckx, R., & Diallo, A. (1996). Evolution de l’acidite dans les sols du delta du fleuve Senegal sous l’influence anthropogene [sols acides sulfates]. Etude etGestion des Sols, 3,151-166.
[20]
Diagana, A. (1990). Etude des paramètreshydrodynamiques des aquifères de la bassevalléedu Sénégal.entre Saint-Louis et Podor (p. 62). Mémoire de DEA hydrogéologie. Fac. Des Sciences. Univ. C. A. Diop de Dakar.
[21]
Diagana, A. (1994). Étudeshydrogéologiquesdans la vallée du fleuveSénégal de Bakel à Podor: relations eaux de surface/eauxsouterraines. Master’s Thesis, Cheikh Anta Diop University.
[22]
Diaw, M. (2008). Approchehydrochimiqueetisotopique de la relation eau de surface/nappe et du mode de recharge dansl’estuaire et la bassevallée du fleuveSénégal.Master’s Thesis, Cheikh Anta Diop University.
[23]
Diaw, M. (2019). Etude du fonctionnementhydrogéochimique des eaux de surface et des nappessuperficielles du delta et de la bassevallée du fleuveSénégal: Apports des outilsgéochimiques, isotopiques, des analyses statistiques et des SIG. Ph.D. Thesis, Université Cheikh Anta Diop.
[24]
Diop, D. (2008). Accès à l’eauet agriculture dans la vallée du fleuveSénégal. GESTES.
[25]
Elwood, J. M., & van der Werf, B. (2022). Nitrates in Drinking Water and Cancers of the Colon and Rectum: A Meta-Analysis of Epidemiological Studies. Cancer Epidemiology, 78, Article ID: 102148. https://doi.org/10.1016/j.canep.2022.102148
[26]
Fontes, J. C., & Matray, J. M. (1993). Geochemistry and Origin of Formation Brines from the Paris Basin, France. Chemical Geology, 109, 177-200. https://doi.org/10.1016/0009-2541(93)90069-u
[27]
Geurts, J. J. M., Sarneel, J. M., Willers, B. J. C., Roelofs, J. G. M., Verhoeven, J. T. A., & Lamers, L. P. M. (2009). Interacting Effects of Sulphate Pollution, Sulphide Toxicity and Eutrophication on Vegetation Development in Fens: A Mesocosm Experiment. Environmental Pollution, 157, 2072-2081. https://doi.org/10.1016/j.envpol.2009.02.024
[28]
Gibbs, R. J. (1970). Mechanisms Controlling World Water Chemistry. Science, 170, 1088-1090. https://doi.org/10.1126/science.170.3962.1088
[29]
Gning, A. A. (2015). Etude etModélisationHydrogéologique des Interactions Eaux de Surface-EauxSouterrainesdans un Contexted’AgricultureIrriguéedans le Delta du FleuveSénégal.Master’s Thesis, Université de Liège. https://orbi.uliege.be/handle/2268/179594
[30]
Güler, C., & Thyne, G. D. (2004). Delineation of Hydrochemical Facies Distribution in a Regional Groundwater System by Means of Fuzzy c‐Means Clustering. Water Resources Research, 40, W12503. https://doi.org/10.1029/2004wr003299
[31]
Güler, C., Thyne, G. D., McCray, J. E., & Turner, K. A. (2002). Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeology Journal, 10, 455-474. https://doi.org/10.1007/s10040-002-0196-6
[32]
Helstrup, T., Jørgensen, N. O., & Banoeng-Yakubo, B. (2007). Investigation of Hydrochemical Characteristics of Groundwater from the Cretaceous-Eocene Limestone Aquifer in Southern Ghana and Southern Togo Using Hierarchical Cluster Analysis. Hydrogeology Journal, 15, 977-989. https://doi.org/10.1007/s10040-007-0165-1
[33]
Hem, J. D. (1992). Study and Interpretation of Chemical Characteristics of Natural Water (3rd ed.). USGS Water-Supply Paper.
[34]
Herczeg, A. L., Dogramaci, S. S., & Leaney, F. W. J. (2001). Origin of Dissolved Salts in a Large, Semi-Arid Groundwater System: Murray Basin, Australia. Marine and Freshwater Research, 52, 41-52. https://doi.org/10.1071/mf00040
[35]
Husson, F., Le, S., & Pagès, J. (2017). Exploratory Multivariate Analysis by Example Using R (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b21874.
[36]
Illy, P. (1973). Étudehydrogéologique de la vallée du fleuveSénégal.Projet hydro agricole du bassin du fleuveSénégal.Rapport RAF/65061.
[37]
Le Brusq, J. Y. (1980). Etude pédologique des cuvettes de la vallée du Lampsar.Institut Français de Recherche Scientifique pour le Développement en Cooperation (ORSTOM).
[38]
Lei, Y., Liu, Y., Sun, Z., Zou, C., Ma, R., Yin, L. et al. (2023). Influences of Paleoclimatic Environment and Hydrogeochemical Evolution on Groundwater Salinity in an Arid Inland Plain in Northwestern China. Applied Geochemistry, 154, Article ID: 105688. https://doi.org/10.1016/j.apgeochem.2023.105688
[39]
Loyer, J. Y. (1989). Les sols salés de la bassevallée du fleuveSénégal: Caractérisation, distribution etévolutionsous cultures. ORSTOM.
[40]
Loyer, J. Y., Mougenot, B., & Zante, P. (1986).Changementsrécentsinduits par l’interventionhumainesur les sols de la bassevallée du fleuveSénégal. ORSTOM.
[41]
Man, K., Ma, Z. M., & Xu, X. J. (2014). Research on the Mechanism of Sulfate Pollution of Groundwater in Jiaozuo Area. Applied Mechanics and Materials, 665, 436-439. https://doi.org/10.4028/www.scientific.net/amm.665.436
[42]
Meybeck, M. (2003). Global Analysis of River Systems: From Earth System Controls to Anthropocene Syndromes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 1935-1955. https://doi.org/10.1098/rstb.2003.1379
[43]
Michel, P. (1973). Les bassins des fleuvesSénégaletGambie. Etude géomorphologique.ORSTOM.
[44]
Moussa, A. B., Mzali, H., Elmejri, H., & Bel Haj Salem, S. (2019). Apport des outils hydrogéochimiques à l’évaluation de la qualité et l’aptitude des eaux souterraines à l’irrigation: Cas de la nappe phréatique de la basse vallée de Medjerda, Tunisie Nord-Orientale. La Houille Blanche, 105, 35-44. https://doi.org/10.1051/lhb/2019053
[45]
Ngom, D. F. (2013). Variabilitéclimatique au Sénégaletévolution des ressources en eau dans le delta du fleuveSénégalsous influence anthropique. Ph.D. Thesis, Cheikh Anta Diop University.
[46]
OMVS (1972). Etude hydroagricole de la vallée du Sénégal Reconnaissance hydrogéologique: Rapport Projet. FAO.
[47]
Palmer, C. D., & Cherry, J. A. (1984). Geochemical Evolution of Groundwater in Sequences of Sedimentary Rocks. Journal of Hydrology, 75, 27-65. https://doi.org/10.1016/0022-1694(84)90045-3
[48]
Piper, A. M. (1953).A Graphic Procedure in the Geochemical Interpretation of Water Analysis, vol. 12.United States Geological Survey Groundwater Note.
[49]
Qi, S., Feng, Q., Shu, H., Liu, W., Zhu, M., Zhang, C. et al. (2023). Redistribution Effect of Irrigation on Shallow Groundwater Recharge Source Contributions in an Arid Agricultural Region. Science of the Total Environment, 865, Article ID: 161106. https://doi.org/10.1016/j.scitotenv.2022.161106
[50]
R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org
[51]
Roger, J., Duvail, C., Barusseau, J. P., Noel, B. J., Nehlig, P., & Serrano, O. (2009b). Carte géologique du Sénégal à 1/500,000, feuillesnord-ouest, nord-estetsud-ouest. Ministère des Mines, de l’Industrie et des PME, Direction des Mines et de la Géologie.
[52]
Roger, J., Noel, B. J., Barusseau, J. P., Serrano, O., Nehlig, P., & Duvail, C. (2009a). Notice explicative de la carte géologique du Sénégal à 1/500,000, feuillesnord-ouest, nord-estetsud-ouest. Ministère des Mines, de l’Industrie et des PME, Direction des Mines et de la Géologie.
[53]
SAED (2021). DouzièmeLettre de Mission de la SAED 2018-2020.
[54]
Saos, J. L., & Zante, P. (1985). Le “bouchon-barrage” de Kheune, son influence sur les eaux de la nappealluvialeet du fleuveSénégal. ORSTOM.
[55]
Soucek, D. J., & Kennedy, A. J. (2005). Effects of Hardness, Chloride, and Acclimation on the Acute Toxicity of Sulfate to Freshwater Invertebrates. Environmental Toxicology and Chemistry, 24, 1204-1210. https://doi.org/10.1897/04-142.1
[56]
Stetzenbach, K. J., Hodge, V. F., Guo, C., Farnham, I. M., & Johannesson, K. H. (2001). Geochemical and Statistical Evidence of Deep Carbonate Groundwater within Overlying Volcanic Rock Aquifers/Aquitards of Southern Nevada, USA. Journal of Hydrology, 243, 254-271. https://doi.org/10.1016/s0022-1694(00)00418-2
[57]
Travi, Y. (1993).Hydrogéologieethydrochimie des aquifères du Sénégal. Hydrogéochimie du fluordans les eauxsouterraines. Institut de Géologie—Université Louis-Pasteur.
[58]
Tweed, S., Leblanc, M., Cartwright, I., Favreau, G., & Leduc, C. (2011). Arid Zone Groundwater Recharge and Salinisation Processes; An Example from the Lake Eyre Basin, Australia. Journal of Hydrology, 408, 257-275. https://doi.org/10.1016/j.jhydrol.2011.08.008
[59]
Usunoff, E. J., & Guzmán‐Guzmán, A. (1989). Multivariate Analysis in Hydrochemistry: An Example of the Use of Factor and Correspondence Analyses. Groundwater, 27, 27-34. https://doi.org/10.1111/j.1745-6584.1989.tb00004.x
[60]
van Lavieren, L. P., & van Wetten, J. C. J. (1988). Profil de l’environnement de la vallée du fleuveSénégal (No. 1988-3).RIN.
[61]
Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845
[62]
Ward, M. H., deKok, T. M., Levallois, P., Brender, J., Gulis, G., Nolan, B. T. et al. (2005). Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs. Environmental Health Perspectives, 113, 1607-1614. https://doi.org/10.1289/ehp.8043
[63]
WHO (2014). Guidelines for Drinking-Water Quality. WHO Chronicle, 38, 104-108.
[64]
Wu, J., Cheng, S., He, L., Wang, Y., Yue, Y., Zeng, H. et al. (2023). Assessing Water Quality in the Pearl River for the Last Decade Based on Clustering: Characteristic, Evolution and Policy Implications. Water Research, 244, Article ID: 120492. https://doi.org/10.1016/j.watres.2023.120492
[65]
Zhang, J., Zhou, J., Zhou, Y., Zeng, Y., Ji, Y., Sun, Y. et al. (2021). Hydrogeochemical Characteristics and Groundwater Quality Assessment in the Plain Area of Yarkant River Basin in Xinjiang, P.R. China. Environmental Science and Pollution Research, 28, 31704-31716. https://doi.org/10.1007/s11356-021-12851-8