While hydropower is generally considered a clean energy source, it is important to recognize that their waste can still contribute to greenhouse gas emissions (GHG). The purpose of this study is to assess the carbon footprint associated with the waste sector throughout the operational phase of the Nam Theun 2 hydropower plant in Laos. Understanding the environmental impact of the waste sector is crucial for ensuring the plant’s sustainability. This study utilizes the theoretical estimation method recommended in the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, as well as the Requirements for Specification with guidance at the organization level for quantification and reporting of GHG emissions and removals. We emphasize the significance of implementing sustainable waste management practices to reduce GHG emissions and minimize the environmental impact of hydropower operations. By conducting a comprehensive analysis, this paper also provides insights into the environmental implications of waste management in hydropower plants and identifies strategies to mitigate the carbon footprint in the waste sector. The findings contribute to a better understanding of the environmental sustainability of hydropower plants and provide valuable guidance for policymakers, energy producers, and environmental practitioners involved in hydropower plant design and operation.
References
[1]
Ackerman, F. (2000) Waste Management and Climate Change. Local Environment, 5, 223-229. https://doi.org/10.1080/13549830050009373
[2]
Aljaradin, M., & Persson, K. M. (2012). Comparison of Different Waste Management Technologies and Climate Change Effect—Jordan. American Journal of Climate Change, 1, 57-63. https://doi.org/10.4236/ajcc.2012.12006
[3]
Bartram, D., Short, M. D., Ebie, Y., Farkaš, J., Gueguen, C., Peters, G. M., Zanzottera, N. M., & Karthik, M. (2006). IPCC Volume 5 Waste Chapter 6: Wastewater Treatment and Discharge. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_6_Ch06_Wastewater.pdf
[4]
Bayard, R., Benbelkacem, H., Gourdon, R., & Buffière, P. (2018). Characterization of Selected Municipal Solid Waste Components to Estimate Their Biodegradability. Journal of Environmental Management, 216, 4-12. https://doi.org/10.1016/j.jenvman.2017.04.087
[5]
Bogner, J., Diaz, C., Faaij, A., Gao, Q., Hashimoto, S., Mareckova, K., Pipatti, R., & Zhang, T. (2007). Waste Management. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[6]
Buendia, C., Kranjc, K., Fukuda, J., Osako, N. S., Shermanau, Y., & Federici, P. (2019a). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy. Task Force on National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/
[7]
Buendia, C., Kranjc, K., Fukuda, J., Osako, N. S., Shermanau, Y., & Federici, P. (2019b). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste.Task Force on National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/
[8]
Carrasco, J. F. (2014). The Challenge of Changing to a Low-Carbon Economy: A Brief Overview. Low Carbon Economy, 5, 1-5. https://doi.org/10.4236/lce.2014.51001
[9]
Chen, L., & Taylor, D. (2011). Public Awareness and Performance Relating to the Implementation of a Low-Carbon Economy in China: A Case Study from Zhengzhou. Low Carbon Economy, 2, 54-61. https://doi.org/10.4236/lce.2011.22009
[10]
Chu, Y., Pan, Y., Zhan, H., Cheng, W., Huang, L., Wu, Z. et al. (2022). Systems Accounting for Carbon Emissions by Hydropower Plant. Sustainability, 14, Article 6939. https://doi.org/10.3390/su14116939
[11]
Cristóbal, J., Albo, J., & Irabien, A. (2010). Environmental Sustainability Assessment of Electricity from Fossil Fuel Combustion: Carbon Footprint. Low Carbon Economy, 1, 86-91. https://doi.org/10.4236/lce.2010.12011
[12]
Descloux, S., Chanudet, V., Poilvé, H., & Grégoire, A. (2010). Co-Assessment of Biomass and Soil Organic Carbon Stocks in a Future Reservoir Area Located in Southeast Asia. Environmental Monitoring and Assessment, 173, 723-741. https://doi.org/10.1007/s10661-010-1418-3
[13]
Dincă, C., Cormoş, C., & Necula, H. (2013). Environmental Impact Assessment of GHG Emissions Generated by Coal Life Cycle and Solutions for Reducing Co2. Journal of Environmental Protection, 4, 5-15. https://doi.org/10.4236/jep.2013.48a2002
[14]
Eneh, A., & Oluigbo, S. (2012). Mitigating the Impact of Climate Change through Waste Recycling. Research Journal of Environmental and Earth Sciences, 4, 776-781. https://www.researchgate.net/publication/266584784
[15]
European Commission (2006). A European Strategy for Sustainable, Competitive and Secure Energy EN EN.
IPCC (2007b). IPCC, 2007: Climate Change 2007: Mitigation. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 385-618). Cambridge University Press.
[18]
IPCC (2019a). IPCC Volume 2 An1_Worksheet, Waste All Worksheets in Vol.5.
IPCC (2019c).2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.In E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici (Eds.), Published: IPCC, Switzerland. https://www.ipcc-nggip.iges.or.jp/
[21]
IPCC (2021). AR6 WGI Report—List of Corrigenda to Be Implemented. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_05.pdf
[22]
IPCC (2022). Mitigation of Climate Change Climate Change 2022 Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/
[23]
ISO (2018).ISO 14064-1:2018(en), Greenhouse Gases—Part 1: Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals. https://www.iso.org/obp/ui#iso:std:iso:14064:-1:ed-2:v1:en
[24]
Jha, A. K., Sharma, C., Singh, N., Ramesh, R., Purvaja, R., & Gupta, P. K. (2008). Greenhouse Gas Emissions from Municipal Solid Waste Management in Indian Mega-Cities: A Case Study of Chennai Landfill Sites. Chemosphere, 71, 750-758. https://doi.org/10.1016/j.chemosphere.2007.10.024
[25]
Jiang, T., Shen, Z., Liu, Y., & Hou, Y. (2018). Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China. Sustainability, 10, Article 2018. https://doi.org/10.3390/su10062018
[26]
Keovongsa, S., Phonhalath, K., & Phommixay, S. (2023). E-Waste Management in Nam Theun 2 Power Company Limited: A Review of Issues, Challenges and Solutions. Souphanouvong University Journal Multidisciplinary Research and Development, 9, 338-347. http://www.su-journal.com/index.php/su/article/view/536
[27]
Korre, A., Nie, Z., & Durucan, S. (2009). Life Cycle Modelling of Fossil Fuel Power Generation with Post Combustion CO2 Capture. Energy Procedia, 1, 3771-3778. https://doi.org/10.1016/j.egypro.2009.02.177
[28]
Leonzio, G. (2023). Life Cycle Assessment of Carbon Dioxide Supply Chains: State of the Art and Methodology Description. Applied Sciences, 14, Article 385. https://doi.org/10.3390/app14010385
[29]
Li, Z., Lu, L., Lv, P., Du, H., Guo, J., He, X. et al. (2017). Carbon Footprints of Pre-Impoundment Clearance on Reservoir Flooded Area in China’s Large Hydro-Projects: Implications for GHG Emissions Reduction in the Hydropower Industry. Journal of Cleaner Production, 168, 1413-1424. https://doi.org/10.1016/j.jclepro.2017.09.091
[30]
MoNRE, L. P. (2019). Lao PDR Green Climate Fund Country Programme.
[31]
Nam Theun 2. (2023). NT2—Nam Theun 2. https://www.namtheun2.com/
[32]
NTPC (2004). Summary Environmental and Social Impact Assessment—Nam Theun 2 Hydroelectric Project in Lao People’s Democratic Republic. https://www.worldbank.org
[33]
Pipatti, R., Alves, J. W. S., Gao, Q. X., Cabrera, C. L., Mareckova, K., Oonk, H., Scheehle, E., Sharma, C., Smith, A., Svardal, P., & Yamada, M. (2006). Chapter 4: Biological Treatment of Solid Waste. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf
[34]
Ramachandra, T. V., Aithal, B. H., & Sanna, D. D. (2012). Insights to Urban Dynamics through Landscape Spatial Pattern Analysis. International Journal of Applied Earth Observation and Geoinformation, 18, 329-343. https://doi.org/10.1016/j.jag.2012.03.005
[35]
Ramachandra, T. V., Shwetmala, K., & Dania, T. M. (2014). Carbon Footprint of the Solid Waste Sector in Greater Bangalore, India. In S. Muthu (Ed.), Assessment of Carbon Footprint in Different Industrial Sectors (pp. 265-292). Springer. https://doi.org/10.1007/978-981-4560-41-2_11
[36]
Sen, G., Chau, H., Tariq, M. A. U. R., Muttil, N., & Ng, A. W. M. (2021). Achieving Sustainability and Carbon Neutrality in Higher Education Institutions: A Review. Sustainability, 14, Article 222. https://doi.org/10.3390/su14010222
[37]
Towprayoon, S., Ishigaki, T., Chiemchaisri, C., & Abdel-Azi, A. O. (2019a). Chapter 3: Solid Waste Disposal. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_3_Ch03_SWDS.pdf
[38]
Towprayoon, S., Kim, S., Jeon, E. C., Ishigaki, T., & Amadou, S. N. (2019b). Chapter 5: Incineration and Open Burning of Waste. https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_5_Ch05_IOB.pdf
[39]
Tufvesson, L. M., Tufvesson, P., Woodley, J. M., & Börjesson, P. (2012). Life Cycle Assessment in Green Chemistry: Overview of Key Parameters and Methodological Concerns. The International Journal of Life Cycle Assessment, 18, 431-444. https://doi.org/10.1007/s11367-012-0500-1
[40]
Villar, J. C., Meijide, B. G., Penela, A. C., & Hidalgo, S. L. (2014). Carbonfeel Project: Calculation, Verification, Certification and Labeling of the Carbon Footprint. Low Carbon Economy, 5, 65-79. https://doi.org/10.4236/lce.2014.52008
[41]
Waldron, C. D., Harnisch, J., Lucon, O., Mckibbon, R. S., Saile, S. B., Wagner, F., & Walsh, M. P. (2006). Chapter 3: Mobile Combustion. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustion.pdf
[42]
Wang, J., Chen, X., Liu, Z., Frans, V. F., Xu, Z., Qiu, X. et al. (2019). Assessing the Water and Carbon Footprint of Hydropower Stations at a National Scale. Science of the Total Environment, 676, 595-612. https://doi.org/10.1016/j.scitotenv.2019.04.148