全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Allogenic Stem Cell Transplantation and COVID-19 Antibodies: Mechanistic Insights and Recipient Concerns

DOI: 10.4236/oji.2024.142003, PP. 16-32

Keywords: Vaccination, Stem Cell, Allogeneic, COVID, Antibodies

Full-Text   Cite this paper   Add to My Lib

Abstract:

Collecting umbilical cord stem cells is widely practiced due to its numerous benefits. Over the past decade, umbilical cord stem cells (UCSCs) have shown effectiveness in treating various conditions, such as bone pathologies, neuropsychiatry disorders, hereditary diseases, and metabolic disorders. However, factors like immunization affect the quantity and quality of cord harvesting. Studies suggest that antibodies from the mother pass through the umbilical cord to protect the infant against infections. Cleaning the umbilical cord before stem cell extraction is crucial to maintain sterility and cell integrity. Vaccinating a female donor, including for COVID-19, typically does not directly affect the stem cells. Although vaccines aim to trigger an immunological response, they generally do not affect the donor’s stem cells.

References

[1]  Kim, D.W., Staples, M., Shinozuka, K., Pantcheva, P., Kang, S.D. and Borlongan, C.V. (2013) Wharton’s Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications. International Journal of Molecular Sciences, 14, 11692-11712.
https://doi.org/10.3390/ijms140611692
[2]  Sun, L., Li, D., Song, K., Wei, J., Yao, S., Li, Z., et al. (2017) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect against Cisplatin-Induced Ovarian Granulosa Cell Stress and Apoptosis in Vitro. Scientific Reports, 7, Article No. 2552.
https://doi.org/10.1038/s41598-017-02786-x
[3]  Atala, A. (2007) Engineering Tissues, Organs and Cells. Journal of Tissue Engineering and Regenerative Medicine, 1, 83-96.
https://doi.org/10.1002/term.18
[4]  Qamar, A.Y., Hussain, T., Rafique, M.K., Bang, S., Tanga, B.M., Seong, G., et al. (2021) The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility.
https://pubmed.ncbi.nlm.nih.gov/34572109/
[5]  Zhao, Y.X., Chen, S.R., Su, P.P., Huang, F.H., Shi, Y.C., Shi, Q.Y., et al. (2019) Using Mesenchymal Stem Cells to Treat Female Infertility: An Update on Female Reproductive Diseases. Stem Cells International, 2019, Article ID: 9071720.
https://doi.org/10.1155/2019/9071720
[6]  Prahl, M., Golan, Y., Cassidy, A.G., Matsui, Y., Li, L., Alvarenga, B., et al. (2022) Evaluation of Transplacental Transfer of mRNA Vaccine Products and Functional Antibodies during Pregnancy and Infancy. Nature Communications, 13, Article No. 4422.
https://doi.org/10.1038/s41467-022-32188-1
[7]  Röbl-Mathieu, M., Kunstein, A., Liese, J., Mertens, T. and Wojcinski, M. (2021) Vaccination in Pregnancy. Deutsches Ärzteblatt International, 118, 262-268.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287076/
[8]  Weiss, M.L. and Troyer, D.L. (2006) Stem Cells in the Umbilical Cord. Stem Cell Reviews, 2, 155-162.
https://doi.org/10.1007/s12015-006-0022-y
[9]  Umer, A., Khan, N., Greene, D.L., Habiba, U.E., Shamim, S. and Khayam, A.U. (2023) The Therapeutic Potential of Human Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Premature Ovarian Failure. Stem Cell Reviews and Reports, 15, 651-666.
https://link.springer.com/article/10.1007/s12015-022-10493-y
[10]  Mahla, R.S. (2016) Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. International Journal of Cell Biology, 2016, Article ID: 6940283.
https://doi.org/10.1155/2016/6940283
[11]  Ullah, I., Subbarao, R.B. and Rho, G.J. (2015) Human Mesenchymal Stem Cells— Current Trends and Future Prospective. Bioscience Reports, 35, e00191.
https://doi.org/10.1042/BSR20150025
[12]  Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022) The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 92.
https://doi.org/10.1038/s41392-022-00932-0
[13]  Gnecchi, M., Zhang, Z., Ni, A. and Dzau, V.J. (2008) Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy. Circulation Research, 103, 1204-1219.
https://doi.org/10.1161/CIRCRESAHA.108.176826
[14]  Castillo, M., Liu, K., Bonilla, L. and Rameshwar, P. (2007) The Immune Properties of Mesenchymal Stem Cells. International Journal of Biomedical Science, 3, 76-80.
https://doi.org/10.59566/IJBS.2007.3076
[15]  Thaweesapphithak, S., Tantrawatpan, C., Kheolamai, P., Tantikanlayaporn, D., Roytrakul, S. and Manochantr, S. (2019) Human Serum Enhances the Proliferative Capacity and Immunomodulatory Property of MSCs Derived from Human Placenta and Umbilical Cord. . Stem Cell Research & Therapy, 10, Article No. 79.
https://doi.org/10.1186/s13287-019-1175-3
[16]  Kobolak, J., Dinnyes, A., Memic, A., Khademhosseini, A. and Mobasheri, A. (2016) Mesenchymal Stem Cells: Identification, Phenotypic Characterization, Biological Properties and Potential for Regenerative Medicine through Biomaterial Micro-Engineering of Their Niche. Methods, 99, 62-68.
https://doi.org/10.1016/j.ymeth.2015.09.016
[17]  Varaa, N., Azandeh, S., Khodabandeh, Z. and Gharravi, A.M. (2019) Wharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review. The Iranian Journal of Medical Sciences, 44, 437-448.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885715/
[18]  Troyer, D.L. and Weiss, M.L. (2008) Concise Review: Wharton’s Jelly-Derived Cells Are a Primitive Stromal Cell Population. Stem Cells, 26, 591-599.
https://doi.org/10.1634/stemcells.2007-0439
[19]  Wang, M., Yuan, Q. and Xie, L. (2018) Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells International, 2018, Article ID: 3057624.
https://doi.org/10.1155/2018/3057624
[20]  Turcan, N., Ivanescu, B., Stancioiu, F., Baicus, A. and Cirstoiu, M.M. (2021) COVID-19 Pandemic Impact on Cord Blood Collection for Stem Cell Use and Actual Perspectives. MAEDICA, 16, 189-193.
[21]  Clem, A.S. (2011) Fundamentals of Vaccine Immunology. Journal of Global Infectious Diseases, 3, 73-78.
https://doi.org/10.4103/0974-777X.77299
[22]  Vaillant, A.A.J., Jamal, Z., Patel, P. and Ramphul, K. (2023) Immunoglobulin. 2nd Edition, StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK513460/
[23]  Ogonek, J., Juric, M.K., Ghimire, S., Varanasi, P.R., Holler, E., Greinix, H., et al. (2016) Immune Reconstitution after Allogeneic Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 7, Article 507.
https://doi.org/10.3389/fimmu.2016.00507
[24]  Klyushnenkova, E., Mosca, J.D., Zernetkina, V., Majumdar, M.K., Beggs, K.J., Simonetti, D.W., et al. (2005) T cell Responses to Allogeneic Human Mesenchymal Stem Cells: Immunogenicity, Tolerance, and Suppression. Journal of Biomedical Science, 12, 47-57.
https://doi.org/10.1007/s11373-004-8183-7
[25]  Marino, L., Castaldi, M.A., Rosamilio, R., Ragni, E., Vitolo, R., Fulgione, C., et al. (2019) Mesenchymal Stem Cells from the Wharton’s Jelly of the Human Umbilical Cord: Biological Properties and Therapeutic Potential. International Journal of Stem Cells, 12, 218-226.
https://doi.org/10.15283/ijsc18034
[26]  Kumar, S., Nyodu, R., Maurya, V.K., Saxena, S.K., Kumar, S., Nyodu, R., et al. (2020) Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In: Saxena, S.K., Ed. Coronavirus Disease 2019 (COVID-19), Springer, 23-31.
https://doi.org/10.1007/978-981-15-4814-7_3
[27]  Kassis, N.E.I., Abdallah, W., Chakra, R.A., Arab, W., Sassine, S. and Atallah, D. (2022) COVID-19 mRNA Vaccine in Pregnancy and Newborn Passive Immunization: A Case Report. Future Science OA, 8, Article FSO761.
https://doi.org/10.2144/fsoa-2021-0043
[28]  Cox, R.J. and Brokstad, K.A. (2020) Not Just Antibodies: B Cells and T Cells Mediate Immunity to COVID-19. Nature Reviews Immunology, 20, 581-582.
https://doi.org/10.1038/s41577-020-00436-4
[29]  Leach, J.L., Sedmak, D.D., Osborne, J.M., Rahill, B., Lairmore, M.D. and Anderson, C.L. (1996) Isolation from Human Placenta of the IgG Transporter, FcRn, and Localization to the Syncytiotrophoblast: Implications for Maternal-Fetal Antibody Transport. The Journal of Immunology, 157, 3317-3322.
https://doi.org/10.4049/jimmunol.157.8.3317
[30]  Simister, N.E. and Story, C.M. (1997) Human Placental Fc Receptors and the Transmission of Antibodies from Mother to Fetus. Journal of Reproductive Immunology, 37, 1-23.
https://doi.org/10.1016/S0165-0378(97)00068-5
[31]  Telemo, E. and Hanson, L.A. (1996) Antibodies in Milk. Journal of Mammary Gland Biology and Neoplasia, 1, 243-249.
https://link.springer.com/article/10.1007/BF02018077
[32]  Siegrist, C.A. (2018) 2. Vaccine Immunology. In: Plotkin, S.A., et al., Eds., Plotkins Vaccines, 7th Edition, Elsevier, 16-34.e7.
https://doi.org/10.1016/B978-0-323-35761-6.00002-X
[33]  D’Souza, A., Fretham, C., Lee, S.J., Arora, M., Brunner, J., Chhabra, S., et al. (2020) Current Use of and Trends in Hematopoietic Cell Transplantation in the United States. Biology of Blood and Marrow Transplantation, 26, e177-e182.
https://doi.org/10.1016/j.bbmt.2020.04.013
[34]  Pao, M., Papadopoulos, E.B., Chou, J., Glenn, H., Castro-Malaspina, H., Jakubowski, A.A., et al. (2008) Response to Pneumococcal (PNCRM7) and Haemophilus Influenzae Conjugate Vaccines (HIB) in Pediatric and Adult Recipients of an Allogeneic Hematopoietic Cell Transplantation (alloHCT). Biology of Blood and Marrow Transplantation, 14, 1022-1030.
https://doi.org/10.1016/j.bbmt.2008.06.012
[35]  Muhsen, I.N., Aljurf, M., Wingard, J.R., Poland, G.A., Komanduri, K.V., Whitaker, J.A., et al. (2018) Vaccinating Donors for Hematopoietic Cell Transplantation: A Systematic Review and Future Perspectives. Vaccine, 36, 6043-6052.
https://doi.org/10.1016/j.vaccine.2018.08.044
[36]  Majeed, A., Harris, Z., Brucks, E., Hinchman, A., Farooqui, A.A., Tariq, M.J., et al. (2020) Revisiting Role of Vaccinations in Donors, Transplant Recipients, Immunocompromised Hosts, Travelers, and Household Contacts of Stem Cell Transplant Recipients. Biology of Blood and Marrow Transplantation, 26, E38-E50.
https://doi.org/10.1016/j.bbmt.2019.10.030
[37]  Atyeo, C., DeRiso, E.A., Davis, C., Bordt, E.A., de Guzman, R.M., Shook, L.L., et al. (2021) COVID-19 mRNA Vaccines Drive Differential Antibody Fc-Functional Profiles in Pregnant, Lactating, and Nonpregnant Women. Science Translational Medicine, 13, eabi8631.
https://doi.org/10.1126/scitranslmed.abi8631
[38]  Male, V. (2021) Are COVID-19 Vaccines Safe in Pregnancy? Nature Reviews Immunology, 21, 200-201.
https://doi.org/10.1038/s41577-021-00525-y
[39]  Leclerc, M., Redjoul, R., Le Bouter, A., Beckerich, F., Robin, C., Parinet, V., et al. (2022) Impact of Donor Vaccination on Recipient Response to Early SARS-CoV-2 mRNA Vaccination after Allogeneic HSCT. The Lancet Haematology, 9, E318-E321.
https://doi.org/10.1016/S2352-3026(22)00097-7
[40]  Jalkanen, P., Kolehmainen, P., Häkkinen, H.K., Huttunen, M., Tähtinen, P.A., Lundberg, R., et al. (2021) COVID-19 mRNA Vaccine Induced Antibody Responses against Three SARS-CoV-2 variants. Nature Communications, 12, Article No. 3991.
https://doi.org/10.1038/s41467-021-24285-4
[41]  Palmeira, P., Quinello, C., Silveira-Lessa, A.L., Zago, C.A. and Carneiro-Sampaio, M. (2012) IgG Placental Transfer in Healthy and Pathological Pregnancies. Journal of Immunology Research, 2012, Article ID: 985646.
https://doi.org/10.1155/2012/985646
[42]  Harris, A.E., Styczynski, J., Bodge, M., Mohty, M., Savani, B.N. and Ljungman, P. (2015) Pretransplant Vaccinations in Allogeneic Stem Cell Transplantation Donors and Recipients: An Often-Missed Opportunity for Immunoprotection? Bone Marrow Transplantation, 50, 899-903.
https://doi.org/10.1038/bmt.2015.49
[43]  Paul, G. and Chad, R. Newborn Antibodies to SARS-CoV-2 Detected in Cord Blood after Maternal Vaccination—A Case Report. BMC Pediatrics, 21, Article No. 138.
https://doi.org/10.1186/s12887-021-02618-y
[44]  Gray, K.J., Bordt, E.A., Atyeo, C., Deriso, E., Akinwunmi, B., Young, N., et al. (2021) Coronavirus Disease 2019 Vaccine Response in Pregnant and Lactating Women: A Cohort Study. The American Journal of Obstetrics & Gynecology, 225, 303.E1-303.E17.
https://doi.org/10.1016/j.ajog.2021.03.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133