全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Exchange-Correlation Functional on the Structural, Mechanical, and Optoelectronic Properties of Orthorhombic RbSrBr3 Perovskite

DOI: 10.4236/msa.2024.156010, PP. 137-154

Keywords: Density Functional Theory, Mechanical Properties, Photodetector, Ductility, Anisotropic Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present study, the effect of the exchange-correlation functional on the structural, mechanical, and optoelectronic properties of orthorhombic RbSrBr3 perovskite has been investigated using various functionals in Density Functional Theory (DFT) with the CASTEP code. The optimized lattice parameters are quite similar for all the functionals. The electronic properties have shown that RbSrBr3 perovskite is a wide direct band gap compound with a band gap energy ranging from 4.296 eV to 4.494 eV for all the functionals. The mechanical parameters like elastic constants, Young’s modulus, Shear modulus, Poisson’s ratio, Pugh’s ratio, and an anisotropic factor reveal that the RbSrBr3 perovskite has ductile behavior and an anisotropic nature which signifies the mechanical stability of the compound. The Debye temperature might withstand lattice vibration heat. High absorption coefficient (>104 cm1), high optical conductivity, and very low reflectivity have been found in the RbSrBr3 perovskite for all functions. The computed findings on the RbSrBr3 perovskite suggested that the presented studied material is potentially applicable for photodetector and optoelectronic devices.

References

[1]  De Angelis, F. (2018) Perovskite Solar Cells in the Public Domain as the Community Gears up for Technical Advances. ACS Energy Letters, 3, 890-891.
https://doi.org/10.1021/acsenergylett.8b00403
[2]  Stranks, S.D. and Snaith, H.J. (2015) Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nature Nanotechnology, 10, 391-402.
https://doi.org/10.1038/nnano.2015.90
[3]  Liang, J., Liu, J. and Jin, Z. (2017) All‐Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar RRL, 1, Article 1700086.
https://doi.org/10.1002/solr.201700086
[4]  Ornelas-Cruz, I., Trejo, A., Oviedo-Roa, R., Salazar, F., Carvajal, E., Miranda, A., et al. (2020) DFT-Based Study of the Bulk Tin Mixed-Halide CsSnI3-x Brx Perovskite. Computational Materials Science, 178, Article 109619.
https://doi.org/10.1016/j.commatsci.2020.109619
[5]  Stoumpos, C.C., Malliakas, C.D. and Kanatzidis, M.G. (2013) Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 52, 9019-9038.
https://doi.org/10.1021/ic401215x
[6]  Weber, D. (1978) CH3NH3PbX3, ein Pb(II)-System Mit Kubischer Perowskitstruktur/CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B, 33, 1443-1445.
https://doi.org/10.1515/znb-1978-1214
[7]  Gholipour, S., Ali, A.M., Correa‐Baena, J., Turren‐Cruz, S., Tajabadi, F., Tress, W., et al. (2017) Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites. Advanced Materials, 29, Article 1702005.
https://doi.org/10.1002/adma.201702005
[8]  Ippili, S., Jella, V., Kim, J., Hong, S. and Yoon, S. (2018) Enhanced Piezoelectric Output Performance via Control of Dielectrics in Fe2+-Incorporated MAPBI3 Perovskite Thin Films: Flexible Piezoelectric Generators. Nano Energy, 49, 247-256.
https://doi.org/10.1016/j.nanoen.2018.04.031
[9]  Fan, Z., Xiao, J., Sun, K., Chen, L., Hu, Y., Ouyang, J., et al. (2015) Ferroelectricity of CH3NH3PBI3 Perovskite. The Journal of Physical Chemistry Letters, 6, 1155-1161.
https://doi.org/10.1021/acs.jpclett.5b00389
[10]  Röhm, H., Leonhard, T., Schulz, A.D., Wagner, S., Hoffmann, M.J. and Colsmann, A. (2019) Ferroelectric Properties of Perovskite Thin Films and Their Implications for Solar Energy Conversion. Advanced Materials, 31, Article 1806661.
https://doi.org/10.1002/adma.201806661
[11]  Kan, D. and Shimakawa, Y. (2019) Strain Effect on Thermoelectric Properties of SrRuO3 Epitaxial Thin Films. Applied Physics Letters, 115, Article 022403.
https://doi.org/10.1063/1.5097927
[12]  Kobayashi, K., Kan, D., Matsumoto, S., Mizumaki, M. and Shimakawa, Y. (2019) Orbital Magnetic Moments in Strained SrRuO3 Thin Films. Journal of the Physical Society of Japan, 88, Article 084708.
https://doi.org/10.7566/jpsj.88.084708
[13]  Sandeep, Rai, D.P., Shankar, A., Ghimire, M.P., Khenata, R., Bin Omran, S., et al. (2017) Investigation of the Structural, Electronic and Optical Properties of the Cubic RbMF3 Perovskites (M=Be, Mg, Ca, Sr and Ba) Using Modified Becke-Johnson Exchange Potential. Materials Chemistry and Physics, 192, 282-290.
https://doi.org/10.1016/j.matchemphys.2017.02.005
[14]  Hadj Larbi, A., Hiadsi, S., Hadjab, M. and Saeed, M.A. (2018) Optical Study of Cubic, and Orthorhombic Structures of XCaCl3 (X=K, Rb) Compounds: Comparative Ab Initio Calculations. Optik, 166, 169-176.
https://doi.org/10.1016/j.ijleo.2018.03.128
[15]  Ghaithan, H.M., Alahmed, Z.A., Qaid, S.M.H., Hezam, M. and Aldwayyan, A.S. (2020) Density Functional Study of Cubic, Tetragonal, and Orthorhombic CsPbBr3 Perovskite. ACS Omega, 5, 7468-7480.
https://doi.org/10.1021/acsomega.0c00197
[16]  Babu, K.E., Veeraiah, A., Swamy, D.T. and Veeraiah, V. (2012) First-Principles Study of Electronic Structure and Optical Properties of Cubic Perovskite CsCaF3. Chinese Physics Letters, 29, Article 117102.
https://doi.org/10.1088/0256-307x/29/11/117102
[17]  Li, Z., An, X., Cheng, X., Wang, X., Zhang, H., Peng, L., et al. (2014) First-Principles Study of the Electronic Structure and Optical Properties of Cubic Perovskite NaMgF3. Chinese Physics B, 23, Article 037104.
https://doi.org/10.1088/1674-1056/23/3/037104
[18]  Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[19]  Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., et al. (2005) First Principles Methods Using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 220, 567-570.
https://doi.org/10.1524/zkri.220.5.567.65075
[20]  Maeda, T., Kawabata, A. and Wada, T. (2015) First‐Principles Study on Alkali‐Metal Effect of Li, Na, and K in Cu2ZnSnS4 and Cu2ZnSnSe4. Physica Status Solidi C, 12, 631-637.
https://doi.org/10.1002/pssc.201400345
[21]  Kohn, W. and Vashishta, P. (1983) General Density Functional Theory. In: Lundqvist, S. and March, N.H., Eds., Theory of the Inhomogeneous Electron Gas, Springer, 79-147.
https://doi.org/10.1007/978-1-4899-0415-7_2
[22]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
https://doi.org/10.1103/physrev.140.a1133
[23]  Zhao, W. (2021) A Broyden-Fletcher-Goldfarb-Shanno Algorithm for Reliability-Based Design Optimization. Applied Mathematical Modelling, 92, 447-465.
https://doi.org/10.1016/j.apm.2020.11.012
[24]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/physrevlett.77.3865
[25]  Wu, Z. and Cohen, R.E. (2006) More Accurate Generalized Gradient Approximation for Solids. Physical Review B, 73, Article 235116.
https://doi.org/10.1103/physrevb.73.235116
[26]  Pedroza, L.S., da Silva, A.J.R. and Capelle, K. (2009) Gradient-Dependent Density Functionals of the Perdew-Burke-Ernzerhof Type for Atoms, Molecules, and Solids. Physical Review B, 79, Article 201106.
https://doi.org/10.1103/physrevb.79.201106
[27]  Smith, J.M., Jones, S.P. and White, L.D. (1977) Rapid Communication. Gastroenterology, 72, 193.
https://doi.org/10.1016/s0016-5085(77)80340-5
[28]  McWeeny, R. (1968) Multi-Configuration SCF Calculations. Symposia of the Faraday Society, 2, 7-14.
https://doi.org/10.1039/sf9680200007
[29]  He, L., Liu, F., Hautier, G., Oliveira, M.J.T., Marques, M.A.L., Vila, F.D., et al. (2014) Accuracy of Generalized Gradient Approximation Functionals for Density-Functional Perturbation Theory Calculations. Physical Review B, 89, Article 064305.
https://doi.org/10.1103/physrevb.89.064305
[30]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/physrevb.13.5188
[31]  Arar, R., Ouahrani, T., Varshney, D., Khenata, R., Murtaza, G., Rached, D., et al. (2015) Structural, Mechanical and Electronic Properties of Sodium Based Fluoroperovskites NaXF3 (X=Mg, Zn) from First-Principle Calculations. Materials Science in Semiconductor Processing, 33, 127-135.
https://doi.org/10.1016/j.mssp.2015.01.040
[32]  Born, M. (1940) On the Stability of Crystal Lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society, 36, 160-172.
https://doi.org/10.1017/s0305004100017138
[33]  Roknuzzaman, M., Ostrikov, K., Wang, H., Du, A. and Tesfamichael, T. (2017) Towards Lead-Free Perovskite Photovoltaics and Optoelectronics by ab-initio Simulations. Scientific Reports, 7, Article No. 14025.
https://doi.org/10.1038/s41598-017-13172-y
[34]  Angeles, J., (2010), On the Nature of the Cartesian Stiffness Matrix, Ingeniería Mecánica, Tecnologíay Desarrollo, 3, 163-170.
[35]  Pettifor, D.G. (1992) Theoretical Predictions of Structure and Related Properties of Intermetallics. Materials Science and Technology, 8, 345-349.
https://doi.org/10.1179/mst.1992.8.4.345
[36]  Mondal, P., Hossain, K., Khanom, M.S., Hossain, M.K. and Ahmed, F. (2023) First-Principles Calculations to Investigate Structural, Elastic, Thermodynamic, Electronic, and Optical Properties of AgXCL3 (X=Fe, Co & Mn). Computational Condensed Matter, 37, e00860.
https://doi.org/10.1016/j.cocom.2023.e00860
[37]  Duan, Y., Hu, W., Sun, Y. and Peng, M. (2014) Structural and Anisotropic Elastic Properties of Zintl M2Pb (M=Ca, Sr and Ba) Compounds as a Function of Pressure. Journal of Alloys and Compounds, 614, 334-344.
https://doi.org/10.1016/j.jallcom.2014.06.100
[38]  Bootchanont, A., Phacheerak, K., Fongkaew, I., Limpijumnong, S. and Sailuam, W. (2021) The Pressure Effect on the Structural, Elastic, and Mechanical Properties of Orthorhombic MgSiN2 from First-Principles Calculations. Solid State Communications, 336, Article 114318.
https://doi.org/10.1016/j.ssc.2021.114318
[39]  Voigt, W. (1928) Lehrbuch der kristallphysik. Teubner Verlag.
[40]  Reuss, A. (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9, 49-58.
https://doi.org/10.1002/zamm.19290090104
[41]  Hill, R. (1952) The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65, 349-354.
https://doi.org/10.1088/0370-1298/65/5/307
[42]  Mehl, M.J., Klein, B.M. and Papaconstantopoulos, D.A. (1994) First-Principles Calculation of Elastic Properties of Metals Vol.1. In: Westbrook, J.H. and Fleischer, R.L., Eds., Intermetallic Compounds-Principles and Practice, John Wiley & Sons, 195-210.
[43]  Fried, I. (1973) Influence of Poisson’s Ratio on the Condition of the Finite Element Stiffness Matrix. International Journal of Solids and Structures, 9, 323-329.
https://doi.org/10.1016/0020-7683(73)90083-8
[44]  Frantsevich, I.N., Voronov, F.F. and Bakuta, S.A. (1982) Elastic Constants and Elastic Moduli of Metals and Nonmetals (In Russian). Izdatel’stvo Naukova Dumka, Kiev, 288.
[45]  Pugh, S.F. (1954) XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45, 823-843.
https://doi.org/10.1080/14786440808520496
[46]  Ranganathan, S.I. and Ostoja-Starzewski, M. (2008) Universal Elastic Anisotropy Index. Physical Review Letters, 101, Article 055504.
https://doi.org/10.1103/physrevlett.101.055504
[47]  Sundareswari, M., Ramasubramanian, S. and Rajagopalan, M. (2010) Elastic and Thermodynamical Properties of A15 Nb3X (X=Al, Ga, In, Sn and Sb) Compounds—First Principles DFT Study. Solid State Communications, 150, 2057-2060.
https://doi.org/10.1016/j.ssc.2010.08.004
[48]  Newnham, R.E. (2005) Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press.
[49]  Gaillac, R., Pullumbi, P. and Coudert, F. (2016) ELATE: An Open-Source Online Application for Analysis and Visualization of Elastic Tensors. Journal of Physics: Condensed Matter, 28, Article 275201.
https://doi.org/10.1088/0953-8984/28/27/275201
[50]  Wachter, P., Filzmoser, M. and Rebizant, J. (2001) Electronic and Elastic Properties of the Light Actinide Tellurides. Physica B: Condensed Matter, 293, 199-223.
https://doi.org/10.1016/s0921-4526(00)00575-5
[51]  Sayetat, F., Fertey, P. and Kessler, M. (1998) An Easy Method for the Determination of Debye Temperature from Thermal Expansion Analyses. Journal of Applied Crystallography, 31, 121-127.
https://doi.org/10.1107/s0021889897006936
[52]  Laramore, G.E. (1972) Energy Dependence of the Effective Debye Temperature Obtained from Low-Energy-Electron-Diffraction-Intensity Measurements. Physical Review B, 6, 1097-1105.
https://doi.org/10.1103/physrevb.6.1097
[53]  Anderson, O.L. (1963) A Simplified Method for Calculating the Debye Temperature from Elastic Constants. Journal of Physics and Chemistry of Solids, 24, 909-917.
https://doi.org/10.1016/0022-3697(63)90067-2
[54]  Fine, M.E., Brown, L.D. and Marcus, H.L. (1984) Elastic Constants versus Melting Temperature in Metals. Scripta Metallurgica, 18, 951-956.
https://doi.org/10.1016/0036-9748(84)90267-9
[55]  Patel, S.B., Srivastava, A., Sharma, R., Abraham, J.A. and Srivastava, V. (2022) Prediction of Structural, Electronic, Mechanical, Thermal, and Thermoelectric Properties in PbMO3 (M=Sb, Bi) Perovskite Compounds: A DFT Study. The European Physical Journal Plus, 137, Article No. 380.
https://doi.org/10.1140/epjp/s13360-022-02580-3
[56]  König, C., Greer, J.C. and Fahy, S. (2021) Effect of Strain and Many-Body Corrections on the Band Inversions and Topology of Bismuth. Physical Review B, 104, Article 035127.
https://doi.org/10.1103/physrevb.104.035127
[57]  Sharma, R., Dey, A., Ahmed Dar, S. and Srivastava, V. (2021) A DFT Investigation of CsMgX3 (X=Cl, Br) Halide Perovskites: Electronic, Thermoelectric and Optical Properties. Computational and Theoretical Chemistry, 1204, Article 113415.
https://doi.org/10.1016/j.comptc.2021.113415
[58]  Driessen, E.F.C. and de Dood, M.J.A. (2009) The Perfect Absorber. Applied Physics Letters, 94, Article 171109.
https://doi.org/10.1063/1.3126062
[59]  Butt, M.K., Yaseen, M., Ghaffar, A. and Zahid, M. (2020) First Principle Insight into the Structural, Optoelectronic, Half Metallic, and Mechanical Properties of Cubic Perovskite NdInO3. Arabian Journal for Science and Engineering, 45, 4967-4974.
https://doi.org/10.1007/s13369-020-04576-6
[60]  Ahmed, M.T., Islam, S. and Ahmed, F. (2023) A‐Site Cation Replacement of Hydrazinium Lead Iodide Perovskites by Borane Ammonium Ions: A DFT Calculation. ChemistryOpen, 13, e202300207.
https://doi.org/10.1002/open.202300207
[61]  Levine, Z.H. and Louie, S.G. (1982) New Model Dielectric Function and Exchange-Correlation Potential for Semiconductors and Insulators. Physical Review B, 25, 6310-6316.
https://doi.org/10.1103/physrevb.25.6310
[62]  Prokopidis, K. and Kalialakis, C. (2014) Physical Interpretation of a Modified Lorentz Dielectric Function for Metals Based on the Lorentz-Dirac Force. Applied Physics B, 117, 25-32.
https://doi.org/10.1007/s00340-014-5794-1
[63]  Rezaei Niya, S.M. and Hoorfar, M. (2013) Study of Proton Exchange Membrane Fuel Cells Using Electrochemical Impedance Spectroscopy Technique—A Review. Journal of Power Sources, 240, 281-293.
https://doi.org/10.1016/j.jpowsour.2013.04.011
[64]  Tripathy, S.K. and Kumar, V. (2014) Electronic, Elastic and Optical Properties of ZnGeP2 Semiconductor under Hydrostatic Pressures. Materials Science and Engineering: B, 182, 52-58.
https://doi.org/10.1016/j.mseb.2013.11.020
[65]  Ephraim Babu, K., Murali, N., Vijaya Babu, K., Taddesse Shibeshi, P. and Veeraiah, V. (2014) Structural, Elastic, Electronic, and Optical Properties of Cubic Perovskite CsCaCl3 Compound: An ab initio Study. Acta Physica Polonica A, 125, 1179-1185.
https://doi.org/10.12693/aphyspola.125.1179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133