Breast cancer is a deadly disease and radiologists recommend mammography to detect it at the early stages. This paper presents two types of HanmanNets using the information set concept for the derivation of deep information set features from ResNet by modifying its kernel functions to yield Type-1 HanmanNets and then AlexNet, GoogLeNet and VGG-16 by changing their feature maps to yield Type-2 HanmanNets. The two types of HanmanNets exploit the final feature maps of these architectures in the generation of deep information set features from mammograms for their classification using the Hanman Transform Classifier. In this work, the characteristics of the abnormality present in the mammograms are captured using the above network architectures that help derive the features of HanmanNets based on information set concept and their performance is compared via the classification accuracies. The highest accuracy of 100% is achieved for the multi-class classifications on the mini-MIAS database thus surpassing the results in the literature. Validation of the results is done by the expert radiologists to show their clinical relevance.
References
[1]
American Cancer Society (2019) Breast Cancer Facts & Figures 2019-2020. https://www.cancer.org/research/cancer-facts-statistics/breast-cancer-facts-figures.html
[2]
Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556
[3]
Pan, S.J. and Yang, Q. (2010) IEEE Transactions on Knowledge and Data Engineering, 22, 1345-1359. https://doi.org/10.1109/tkde.2009.191
[4]
Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. (2014) How Transferable Are Features in Deep Neural Networks? NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems, Volume 2, 3320-3328.
[5]
Chen, Y., Zhang, Q., Wu, Y., Liu, B., Wang, M. and Lin, Y. (2019) Fine-Tuning ResNet for Breast Cancer Classification from Mammography. In: Wu, C., Chyu, M.C., Lloret, J. and Li, X., Eds., Proceedings of the 2nd International Conference on Healthcare Science and Engineering, Springer, 83-96.
[6]
Ting, F.F., Tan, Y.J. and Sim, K.S. (2019) Expert Systems with Applications,120, 103-115. https://doi.org/10.1016/j.eswa.2018.11.008
[7]
Hassan, S.A., Sayed, M.S., Abdalla, M.I. and Rashwan, M.A. (2020) Multimedia Tools and Applications, 79, 30735-30768. https://doi.org/10.1007/s11042-020-09518-w
[8]
Rybiałek, A. and Jeleń, Ł. (2020) Application of DenseNets for Classification of Breast Cancer Mammograms. In: Saeed, K. and Dvorský, J., Eds., Computer Information Systems and Industrial Management, Springer, 266-277.
[9]
Bruno, A., Ardizzone, E., Vitabile, S. and Midiri, M. (2020) Journal of Medical Signals & Sensors, 10, 158-173. https://doi.org/10.4103/jmss.jmss_31_19
[10]
Deng, J., Ma, Y., Li, D., Zhao, J., Liu, Y. and Zhang, H. (2020) Computer Methods and Programs in Biomedicine, 193, Article ID: 105489. https://doi.org/10.1016/j.cmpb.2020.105489
[11]
Matsuyama, E., Takehara, M. and Tsai, D. (2020) Open Journal of Medical Imaging, 10, 17-29. https://doi.org/10.4236/ojmi.2020.101002
[12]
Mohanty, F., Rup, S., Dash, B., Majhi, B. and Swamy, M.N.S. (2020) Applied Soft Computing, 91, Article ID: 106266. https://doi.org/10.1016/j.asoc.2020.106266
[13]
Nirmala, G. and Suresh Kumar, P. (2020) Journal of Ambient Intelligence and Humanized Computing, 12, 4797-4808. https://doi.org/10.1007/s12652-020-01890-7
[14]
Mohanty, F., Rup, S. and Dash, B. (2020) Biomedical Signal Processing and Control, 62, Article ID: 102108. https://doi.org/10.1016/j.bspc.2020.102108
[15]
Muduli, D., Dash, R. and Majhi, B. (2020) Biomedical Signal Processing and Control, 59, Article ID: 101912. https://doi.org/10.1016/j.bspc.2020.101912
[16]
Yu, X. and Wang, S. (2019) Fundamenta Informaticae, 168, 219-230. https://doi.org/10.3233/fi-2019-1829
[17]
Fu, Y., Patel, B.K., Wu, T., Li, J. and Gao, F. (2020) Advanced Medical Imaging Analytics in Breast Cancer Diagnosis. In: Smith, A., Ed., Women in Industrial and Systems Engineering, Springer, 301-319.
[18]
Li, H., Zhuang, S., Li, D., Zhao, J. and Ma, Y. (2019) Biomedical Signal Processing and Control, 51, 347-354. https://doi.org/10.1016/j.bspc.2019.02.017
[19]
López-Cabrera, J.D., López Rodríguez, L.A. and Pérez-Díaz, M. (2020) Inteligencia Artificial, 23, 56-66. https://doi.org/10.4114/intartif.vol23iss65pp56-66
[20]
Suckling, J., Boggis, C.R.M., Hutt, I., Astley, S., Betal, D., Cerneaz, N., Karrsemeijer, N. and Clark, A. (1994) The mini-MIAS Database of Mammograms. In: Suckling, J., et al., Eds., The Mammographic Image Analysis Society Digital Mammogram Database,Exerpta Medica, International Congress Series 1069, 375-378. http://peipa.essex.ac.uk/info/mias.html
[21]
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. In: Advances in Neural Information Processing Systems, Vol. 25, MIT Press, 1097-1105 https://kr.nvidia.com/content/tesla/pdf/machine-learning/imagenet-classification-with-deep-convolutional-nn.pdf
[22]
Simonyan, K. and Zisserman, A. (2015) Very Deep Convolutional Networks for Large-Scale Image Recognition. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 7-9 May 2015, 1-14. https://arxiv.org/pdf/1409.1556.pdf
[23]
Szegedy, C., Liu, W., Jia, Y.Q., Sermanet, P., Reed, S., Anguelov, D., et al. (2015) Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7-12 June 2015, 1-9. https://doi.org/10.1109/cvpr.2015.7298594
[24]
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. https://doi.org/10.1109/cvpr.2016.90
[25]
Razavian, A.S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014) CNN Features Off-the-Shelf: An Astounding Baseline for Recognition. 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, 23-28 June 2014, 512-519. https://doi.org/10.1109/cvprw.2014.131
[26]
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. and Darrell, T. (2014) DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. The 31st International Conference on Machine Learning (ICML 2014), Beijing, 21-26 June 2014, 647-655. https://arxiv.org/abs/1310.1531
[27]
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Identity Mappings in Deep Residual Networks. In: Leibe, B., Matas, J., Sebe, N. and Welling, M., Eds., Computer VisionECCV 2016, Springer, 630-645.
[28]
Khan, A., Sohail, A., Zahoora, U. and Qureshi, A.S. (2020) Artificial Intelligence Review, 53, 5455-5516. https://doi.org/10.1007/s10462-020-09825-6
[29]
Hanmandlu, M. and Das, A. (2011) Defence Science Journal, 61, 415-430. https://doi.org/10.14429/dsj.61.1177
[30]
Sayeed, F. and Hanmandlu, M. (2017) Knowledge and Information Systems, 52, 485-507. https://doi.org/10.1007/s10115-016-1017-x
[31]
Hanmandlu, M., Bansal, M. and Vasikarla, S. (2020) Journal of Modern Physics, 11, 122-144. https://doi.org/10.4236/jmp.2020.111008
[32]
Dabass, J., Hanmandlu, M. and Vig, R. (2021) SN Applied Sciences, 3, Article No. 610. https://doi.org/10.1007/s42452-021-04616-2
[33]
Dabass, J., Hanmandlu, M. and Vig, R. (2020) Informatics in Medicine Unlocked, 20, Article ID: 100401. https://doi.org/10.1016/j.imu.2020.100401
[34]
Setiawan, A.S., Elysia, Wesley, J. and Purnama, Y. (2015) Procedia Computer Science, 59, 92-97. https://doi.org/10.1016/j.procs.2015.07.341
[35]
Soulami, K.B., Saidi, M.N. and Tamtaoui, A. (2017) A CAD System for the Detection of Abnormalities in the Mammograms Using the Metaheuristic Algorithm Particle Swarm Optimization (PSO). In: El-Azouzi, R., Menasche, D.S., Sabir, E., De Pellegrini, F. and Benjillali, M., Eds., Advances in Ubiquitous Networking 2, UNet 2016, Springer, 505-517.
[36]
Rabidas, R., Midya, A. and Chakraborty, J. (2018) IEEE Journal of Biomedical and Health Informatics, 22, 826-834. https://doi.org/10.1109/jbhi.2017.2715021
[37]
Jiao, Z., Gao, X., Wang, Y. and Li, J. (2018) Pattern Recognition, 75, 292-301. https://doi.org/10.1016/j.patcog.2017.07.008
[38]
Abdelsamea, M.M., Mohamed, M.H. and Bamatraf, M. (2019) Cancer Informatics, 18. https://doi.org/10.1177/1176935119857570
[39]
Boudraa, S., Melouah, A. and Merouani, H.F. (2020) Evolving Systems, 11, 697-706. https://doi.org/10.1007/s12530-019-09322-4
[40]
Agnes, S.A., Anitha, J., Pandian, S.I.A. and Peter, J.D. (2019) Journal of Medical Systems, 44, Article No. 30. https://doi.org/10.1007/s10916-019-1494-z
[41]
Muštra, M., Grgić, M. and Delač, K. (2012) Automatika, 53, 362-372. https://doi.org/10.7305/automatika.53-4.281
[42]
Abdel-Nasser, M., Rashwan, H.A., Puig, D. and Moreno, A. (2015) Expert Systems with Applications,42, 9499-9511. https://doi.org/10.1016/j.eswa.2015.07.072
[43]
Arefan, D., Talebpour, A., Ahmadinejhad, N. and Asl, A.K. (2015) Journal of Instrumentation, 10, T12002. https://doi.org/10.1088/1748-0221/10/12/t12002
[44]
Nithya, R. and Santhi, B. (2017) Journal of Instrumentation, 12, P07009. https://doi.org/10.1088/1748-0221/12/07/p07009
[45]
Rezaee, K., Rezaee, A., Shaikhi, N. and Haddadnia, J. (2020) SN Applied Sciences, 2, Article No. 1297. https://doi.org/10.1007/s42452-020-3103-7