The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems; On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
References
[1]
Liu, Y., Hu, T., Rui, Z., Zhang, Z., Du, K., Yang, T., etal. (2023) An Integrated Framework for Geothermal Energy Storage with CO2 Sequestration and Utilization. Engineering, 30, 121-130. https://doi.org/10.1016/j.eng.2022.12.010
[2]
(1979) International Institute of Refrigeration, Paris.
[3]
Breidenich, C., Magraw, D., Rowley, A. and Rubin, J.W. (1998) The Kyoto Protocol to the United Nations Framework Convention on Climate Change. AmericanJournalofInternationalLaw, 92, 315-331. https://doi.org/10.2307/2998044
[4]
Dudley, B. (2018) BP Statistical Review of World Energy 2018. https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=B.+Dudley%2C+%E2%80%9CBP+Statistical+Review+of+World+Energy+2018%2C%E2%80%9D&btnG
[5]
ASHRAE (2023) 15 & 34 Safety Standard for Refrigeration Systems and Designation and Classification of Refrigerants ISO 5149 Mechanical Refrigerating Systems Used for Cooling and Heating-Safety Requirements. https://www.ashrae.org/technical-resources/bookstore/standards-15-34
[6]
Thevenot, R. (1979) A History of Refrigeration throughout the World. International Institute of Refrigeration, Paris.
[7]
Lorentzen, G. and Pettersen, J. (1993) A New, Efficient and Environmentally Benign System for Car Air-Conditioning. InternationalJournalofRefrigeration, 16, 4-12. https://doi.org/10.1016/0140-7007(93)90014-y
[8]
Pettersen, J. (1994) An Efficient New Automobile Air-Conditioning System Based on CO2 Vapor Compression. U.S. Department of Energy Office of Scientific and Technical Information.
[9]
Kim, M. (2004) Fundamental Process and System Design Issues in CO2 Vapor Compression Systems. ProgressinEnergyandCombustionScience, 30, 119-174. https://doi.org/10.1016/j.pecs.2003.09.002
[10]
Tchanche, B.F., Lambrinos, G., Frangoudakis, A. and Papadakis, G. (2011) Low-grade Heat Conversion into Power Using Organic Rankine Cycles—A Review of Various Applications. RenewableandSustainableEnergyReviews, 15, 3963-3979. https://doi.org/10.1016/j.rser.2011.07.024
[11]
Ayub, Z., etal. (2014) ASHRAE Position Document on Natural Refrigerants. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
[12]
Angelino, G. (1968) Carbon Dioxide Condensation Cycles for Power Production. JournalofEngineeringforPower, 90, 287-295. https://doi.org/10.1115/1.3609190
[13]
Feher, E.G. (1968) The Supercritical Thermodynamic Power Cycle. EnergyConversion, 8, 85-90. https://doi.org/10.1016/0013-7480(68)90105-8
[14]
Sulzer, G. (1950) Verfahren zur erzeugung von arbeit aus warme. Swiss Patent 269599.
[15]
Mubashir, W., Adnan, M., Zaman, M., Imran, M., Naqvi, S. and Mehmood, A. (2023) Thermo-Economic Evaluation of Supercritical CO2 Brayton Cycle Integrated with Absorption Refrigeration System and Organic Rankine Cycle for Waste Heat Recovery. ThermalScienceandEngineeringProgress, 44, Article 102073. https://doi.org/10.1016/j.tsep.2023.102073
[16]
Rieberer, R. (1998) CO2 as Working Fluid for Heat Pump. Ph.D. Thesis, Graz University.
[17]
Lorentzen, G. (1995) The Use of Natural Refrigerants: A Complete Solution to the CFC/HCFC Predicament. InternationalJournalofRefrigeration, 18, 190-197.
[18]
Byrne, P., Miriel, J. and Lenat, Y. (2009) Design and Simulation of a Heat Pump for Simultaneous Heating and Cooling Using HFC or CO2 as a Working Fluid. InternationalJournalofRefrigeration, 32, 1711-1723. https://doi.org/10.1016/j.ijrefrig.2009.05.008
[19]
Vesovic, V., Wakeham, W.A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R. and Millat, J. (1990) The Transport Properties of Carbon Dioxide. JournalofPhysicalandChemicalReferenceData, 19, 763-808. https://doi.org/10.1063/1.555875
[20]
Fenghour, A., William, A., Wakeham, W. and Vesovic, A. (1998) The Viscosity of Carbon Dioxide. JournalofPhysicalandChemicalReferenceData, 27, 31-44. https://doi.org/10.1063/1.556013
[21]
Liley, P. and Desai, P. (1993) Thermophysical Properties of Refrigerants. ASHRAE.
[22]
Xu, W., Zhao, R., Deng, S., Zhao, L. and Mao, S.S. (2021) Is Zeotropic Working Fluid a Promising Option for Organic Rankine Cycle: A Quantitative Evaluation Based on Literature Data. RenewableandSustainableEnergyReviews, 148, Article ID: 111267. https://doi.org/10.1016/j.rser.2021.111267
[23]
Zhong, C., Xu, T., Gherardi, F. and Yuan, Y. (2023) Comparison of CO2 and Water as Working Fluids for an Enhanced Geothermal System in the Gonghe Basin, Northwest China. GondwanaResearch, 122, 199-214. https://doi.org/10.1016/j.gr.2022.05.014
[24]
Paul RIVET (2015) Energies Cooling Presentation CO2. https://fr.scribd.com/document/412096714/Energies-Froid-Presentation-CO2
[25]
Lee, J., Lee, J.I., Yoon, H.J. and Cha, J.E. (2014) Supercritical Carbon Dioxide Turbomachinery Design for Water-Cooled Small Modular Reactor Application. NuclearEngineeringandDesign, 270, 76-89. https://doi.org/10.1016/j.nucengdes.2013.12.039
[26]
Song, Y., Cui, C., Yin, X. and Cao, F. (2022) Advanced Development and Application of Transcritical CO2 Refrigeration and Heat Pump Technology—A Review. EnergyReports, 8, 7840-7869. https://doi.org/10.1016/j.egyr.2022.05.233
[27]
Pearson, A. (2005) Carbon Dioxide—New Uses for an Old Refrigerant. InternationalJournalofRefrigeration, 28, 1140-1148. https://doi.org/10.1016/j.ijrefrig.2005.09.005
[28]
Groll, E.A. and Kim, J. (2007) reviewArticle: Review of Recent Advances toward Transcritical CO2 Cycle Technology. HVAC&RResearch, 13, 499-520. https://doi.org/10.1080/10789669.2007.10390968
[29]
Du, X., Hu, J. and Xia, G. (2020) Operation Characteristic of Supercritical Carbon Dioxide-Cooled Reactor System under Coordination Control Scheme. InternationalJournalofAdvancedRoboticSystems, 17, 172988142093383. https://doi.org/10.1177/1729881420933833
[30]
Martin, K., Lang, G. and Rieberer, R. (2005) Mobile HVAC-System with CO2 as Refrigerant—Simulations and Measurements. SAE Technical Paper 2005-01-2023. https://doi.org/10.4271/2005-01-2023
[31]
McEnaney, R.P., Boewe, D.E., Yin, J.M., Park, Y.C., Bullard, C.W. and Hrnjak, P.S. (1998) Experimental Comparison of Mobile A/C Systems When Operated with Transcritical CO2 versus Conventional R134A. Proceedingsofthe 1998 InternationalRefrigerationConference, Purdue, 14-17 July 1998, 143-150.
[32]
Steven Brown, J., Yana-Motta, S.F. and Domanski, P.A. (2002) Comparitive Analysis of an Automotive Air Conditioning Systems Operating with CO2 and R134a. InternationalJournalofRefrigeration, 25, 19-32. https://doi.org/10.1016/s0140-7007(01)00011-1
[33]
Domanski, P.A. and Didion, D.A. (1994) Evaluation of Suction-Line/Liquid-Line Heat Exchange in the Refrigeration Cycle. InternationalJournalofRefrigeration, 17, 487-493.
[34]
Klein, S.A., Reindl, D.T. and Brownell, K. (2000) Refrigeration System Performance Using Liquid-Suction Heat Exchangers. InternationalJournalofRefrigeration, 23, 588-596. https://doi.org/10.1016/s0140-7007(00)00008-6
[35]
Boewe, D.E., Bullard, C.W., Yin, J.M. and Hrnjak, P.S. (2001) Contribution of Internal Heat Exchanger to Transcritical R-744 Cycle Performance. HVAC&RResearch, 7, 155-168. https://doi.org/10.1080/10789669.2001.10391268
[36]
Boewe, D., Yin, J., Park, Y.C., Bullard, C.W. and Hrnjak, P.S. (1999) The Role of Suction Line Heat Exchanger in Transcritical R744 Mobile A/C Systems. SAE Technical Paper 1999-01-0583. https://doi.org/10.4271/1999-01-0583
[37]
Aprea, C. and Maiorino, A. (2008) An Experimental Evaluation of the Transcritical CO2 Refrigerator Performances Using an Internal Heat Exchanger. InternationalJournalofRefrigeration, 31, 1006-1011. https://doi.org/10.1016/j.ijrefrig.2007.12.016
[38]
Purohit, N., Gupta, D.K. and Dasgupta, M.S. (2018) Experimental Investigation of a CO2 Trans-Critical Cycle with IHX for Chiller Application and Its Energetic and Exergetic Evaluation in Warm Climate. AppliedThermalEngineering, 136, 617-632. https://doi.org/10.1016/j.applthermaleng.2018.03.044
[39]
Sánchez, D., Patiño, J., Llopis, R., Cabello, R., Torrella, E. and Fuentes, F.V. (2014) New Positions for an Internal Heat Exchanger in a CO2 Supercritical Refrigeration Plant. Experimental Analysis and Energetic Evaluation. AppliedThermalEngineering, 63, 129-139. https://doi.org/10.1016/j.applthermaleng.2013.10.061
[40]
Tarawneh, M. (2023) Performance Evaluation of Trans-Critical Carbon Dioxide Refrigeration System Integrated with Porous Internal Heat Exchange. JournalofThermalAnalysisandCalorimetry, 148, 5777-5786. https://doi.org/10.1007/s10973-023-12058-8
[41]
Beaver, C., Yin, J.M., Bullard, C.W. and Hrnjak, P.S. (1999) An Experimental Investigation of Transcritical Carbon Dioxide Systems for Residential Air Conditioning. https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Beaver%2C+C.%2C+Yin%2C+J.M.%2C+Bullard%2C+C.W.+and+Hrnjak%2C+P.S.+%281999%29+An+Experimental+Investigation+of+Transcritical+Carbon+Dioxide+Systems+for+Residential+Air+Conditioning&btnG
[42]
Wang, Z., Han, F. and Sundén, B. (2018) Parametric Evaluation and Performance Comparison of a Modified CO2 Transcritical Refrigeration Cycle in Air-Conditioning Applications. ChemicalEngineeringResearchandDesign, 131, 617-625. https://doi.org/10.1016/j.cherd.2017.08.003
[43]
Elbel, S. and Hrnjak, P. (2004) Flash Gas Bypass for Improving the Performance of Transcritical R744 Systems That Use Microchannel Evaporators. InternationalJournalofRefrigeration, 27, 724-735. https://doi.org/10.1016/j.ijrefrig.2004.07.019
[44]
Cecchinato, L., Corradi, M., Fornasieri, E., Minetto, S., Zilio, C. and Schiavon, A. (2005) Theoretical and Experimental Analysis of a CO2 Refrigerating Cycle with Two-Stage Throttling and Suction of the Flash Vapour by an Auxiliary Compressor, IIRInternationalConferenceonThermophysicalPropertiesandTransferProcessesofRefrigerants, Vicenza, 2005.
[45]
Lambers, K.J. (2008) Das Kaltesystem mit Admission (Economizer) mit besonderer Betrachtung der Verdichtung nach Vorhees. Ph.D. Thesis, Braunschweig University of Technology.
[46]
He, J., Johnston, B., Dhar, D. and Lohmeyer, L. (2017) R744 Parallel Compression Cycle for Automotive Climate Control. SAE Technical Paper 2017-01-0175. https://doi.org/10.4271/2017-01-0175
[47]
BELL (2004) Performance Increase of Carbon Dioxide Refrigeration Cycle with the Addition of Parallel Compression Economization. 6thIIRGustavLorentzenNaturalWorkingFluid, Glasgow, 29 August-1 September 2004.
[48]
Fritschi, H., Tillenkamp, F., Löhrer, R. and Brügger, M. (2016) Efficiency Increase in Carbon Dioxide Refrigeration Technology with Parallel Compression. InternationalJournalofLow-CarbonTechnologies, 12, 171-180. https://doi.org/10.1093/ijlct/ctw002
[49]
Chesi, A., Esposito, F., Ferrara, G. and Ferrari, L. (2014) Experimental Analysis of R744 Parallel Compression Cycle. AppliedEnergy, 135, 274-285. https://doi.org/10.1016/j.apenergy.2014.08.087
[50]
Bai, T., Shi, R. and Yu, J. (2023) Thermodynamic Performance Evaluation of an Ejector-Enhanced Transcritical CO2 Parallel Compression Refrigeration Cycle. InternationalJournalofRefrigeration, 149, 49-61. https://doi.org/10.1016/j.ijrefrig.2022.12.014
[51]
Walter, R. (2009) Natural Refrigerant CO2. Leonardo Da Vinci Agency.
[52]
Devade, K. and Pise, A. (2014) Effect of Cold Orifice Diameter and Geometry of Hot End Valves on Performance of Converging Type Ranque Hilsch Vortex Tube. EnergyProcedia, 54, 642-653. https://doi.org/10.1016/j.egypro.2014.07.306
[53]
Kaya, H., Uluer, O., Kocaoğlu, E. and Kirmaci, V. (2019) Experimental Analysis of Cooling and Heating Performance of Serial and Parallel Connected Counter-Flow Ranquee–hilsch Vortex Tube Systems Using Carbon Dioxide as a Working Fluid. InternationalJournalofRefrigeration, 106, 297-307. https://doi.org/10.1016/j.ijrefrig.2019.07.004
[54]
Li, D., Baek, J.S., Li, D., Baek, J.S., Groll, E.A. and Lawless, P.B. (2000) Thermodynamic Analysis of Vortex Tube and Work Output Expansion Devices for the Transcritical Carbon Dioxide Cycle. Proceedingsofthe 4thIIR-GustavLorentzenConferenceonNaturalWorkingFluids, Paris, 2000, 463-470.
[55]
Liu, Y., Sun, Y. and Tang, D. (2019) Analysis of a CO2 Transcritical Refrigeration Cycle with a Vortex Tube Expansion. Sustainability, 11, Article 2021. https://doi.org/10.3390/su11072021
[56]
Liew, R., Zeegers, J.C.H., Kuerten, J.G.M. and Michalek, W.R. (2012) Maxwell’s Demon in the Ranque-Hilsch Vortex Tube. PhysicalReviewLetters, 109, Article ID: 054503. https://doi.org/10.1103/physrevlett.109.054503
[57]
Yang, J.L., Ma, Y.T., Li, M.X. and Guan, H.Q. (2005) Exergy Analysis of Transcritical Carbon Dioxide Refrigeration Cycle with an Expander. Energy, 30, 1162-1175. https://doi.org/10.1016/j.energy.2004.08.007
[58]
Nickl, J., Will, G., Quack, H. and Kraus, W. (2005) Integration of a Three-Stage Expander into a CO2 Refrigeration System. InternationalJournalofRefrigeration, 28, 1219-1224. https://doi.org/10.1016/j.ijrefrig.2005.08.012
[59]
Ma, Y., Liu, Z. and Tian, H. (2013) A Review of Transcritical Carbon Dioxide Heat Pump and Refrigeration Cycles. Energy, 55, 156-172. https://doi.org/10.1016/j.energy.2013.03.030
[60]
Schoenfield, J., Hwang, Y. and Radermacher, R. (2012) CO2 Transcritical Vapor Compression Cycle with Thermoelectric Subcooler. HVAC&RResearch, 18, 297-311. https://doi.org/10.1080/10789669.2012.625348
[61]
Zoggia, F., Filippini, S., Perfetti, C., and Lozza, G. (2006) Environmental Friendly Heat Exchangers. 7thIIRGustavLorentzenConferenceonNaturalWorkingFluids, Norway, 29-31 May 2006, 366-369.
[62]
Fornasieri, E., Girotto, S. and Minetto, S. (2008) Refrigeration Systems for Hot Climates Using CO2 as the Working Fluid. 8thIIRGustavLorentzenConference, Copenhagen, 7-10 September 2008.
[63]
Girotto, S. and Minetto, S. (2008) Refrigeration Systems for Warm Climates Using Only CO2 as a Working Fluid. Natural Refrigerants. Sustainable Ozone and Climate Friendly Alternatives to HCFCs. GTZ-Proklima International, 287-301. https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Girotto%2C+S.+and+Minetto%2C+S.+%282008%29+Refrigeration+Systems+for+Warm+Climates+Using+Only+CO2+as+a+Working+Fluid.+Natural+Refrigerants.+Sustainable+Ozone+and+Climate+Friendly+Alternatives+to+HCFCs.+GTZ-Proklima+International%2C+287-301&btnG
Besagni, G., Mereu, R. and Inzoli, F. (2016) Ejector Refrigeration: A Comprehensive Review. RenewableandSustainableEnergyReviews, 53, 373-407. https://doi.org/10.1016/j.rser.2015.08.059
[66]
Aidoun, Z., Ameur, K., Falsafioon, M. and Badache, M. (2019) Current Advances in Ejector Modeling, Experimentation and Applications for Refrigeration and Heat Pumps. Part 2: Two-Phase Ejectors. Inventions, 4, Article 16. https://doi.org/10.3390/inventions4010016
[67]
Lee, J.S., Kim, M.S. and Kim, M.S. (2011) Experimental Study on the Improvement of CO2 Air Conditioning System Performance Using an Ejector. InternationalJournalofRefrigeration, 34, 1614-1625. https://doi.org/10.1016/j.ijrefrig.2010.07.025
[68]
Yari, M. and Sirousazar, M. (2011) Performance Characteristics of a Novel Ejector-Expansion Transcritical Co2 Refrigeration Cycle with Gas Cooler Exergy Utilisation. InternationalJournalofExergy, 9, 210-234. https://doi.org/10.1504/ijex.2011.042069
[69]
Takano, Y. (2007) Hiarmoatnsaukgau, TaNkaekuacshhii, maN-agguonya(JP()J.P); Katsuya Kusano, Obu (JP); Makoto. United States Patent No.: US 7.254,961 B2.
[70]
Chen, X., Worall, M., Omer, S., Su, Y. and Riffat, S. (2013) Theoretical Studies of a Hybrid Ejector CO2 Compression Cooling System for Vehicles and Preliminary Experimental Investigations of an Ejector Cycle. AppliedEnergy, 102, 931-942. https://doi.org/10.1016/j.apenergy.2012.09.032
[71]
Bodys, J., Palacz, M., Haida, M., Smolka, J., Nowak, A.J., Banasiak, K., etal. (2017) Full-scale Multi-Ejector Module for a Carbon Dioxide Supermarket Refrigeration System: Numerical Study of Performance Evaluation. EnergyConversionandManagement, 138, 312-326. https://doi.org/10.1016/j.enconman.2017.02.007
[72]
Lawrence, N. and Elbel, S. (2013) Theoretical and Practical Comparison of Two-Phase Ejector Refrigeration Cycles Including First and Second Law Analysis. InternationalJournalofRefrigeration, 36, 1220-1232. https://doi.org/10.1016/j.ijrefrig.2013.03.007
[73]
Lawrence, N. and Elbel, S. (2014). Comparison of CO2 and R134a Two-Phase Ejector Performance for Use in Automotive Air Conditioning Applications. SAE Technical Paper 2014-01-0689. https://doi.org/10.4271/2014-01-0689
[74]
Yang, D., Li, Y., Xie, J. and Wang, J. (2021) Research and Application Progress of Transcritical CO2 Refrigeration Cycle System: A Review. InternationalJournalofLow-CarbonTechnologies, 17, 245-256. https://doi.org/10.1093/ijlct/ctab086
[75]
Zheng, L., Zhang, Y., Hao, L., Lian, H., Deng, J. and Lu, W. (2022) Modelling, Optimization, and Experimental Studies of Refrigeration CO2 Ejectors: A Review. Mathematics, 10, Article 4325. https://doi.org/10.3390/math10224325
[76]
Yadav, S.K., Murari Pandey, K. and Gupta, R. (2021) Recent Advances on Principles of Working of Ejectors: A Review. MaterialsToday: Proceedings, 45, 6298-6305. https://doi.org/10.1016/j.matpr.2020.10.736
[77]
Kornhauser, A.A. (1990) The Use of an Ejector as a Refrigerant Expander. InternationalRefrigerationandAirConditioningConference, Purdue University, Paper 82, 9-19. http://docs.lib.purdue.edu/iracc
[78]
Belman-Flores, J.M., Rangel-Hernández, V.H., Pérez-García, V., Zaleta-Aguilar, A., Fang, Q. and Méndez-Méndez, D. (2020) An Advanced Exergoeconomic Comparison of CO2-Based Transcritical Refrigeration Cycles. Energies, 13, 6454. https://doi.org/10.3390/en13236454
[79]
Liu, Y., Liu, J. and Yu, J. (2020) Theoretical Analysis on a Novel Two-Stage Compression Transcritical CO2 Dual-Evaporator Refrigeration Cycle with an Ejector. InternationalJournalofRefrigeration, 119, 268-275. https://doi.org/10.1016/j.ijrefrig.2020.08.002
[80]
Kumar, K., Gupta, H.K. and Kumar, P. (2020) Analysis of a Hybrid Transcritical CO2 Vapor Compression and Vapor Ejector Refrigeration System. AppliedThermalEngineering, 181, Article ID: 115945. https://doi.org/10.1016/j.applthermaleng.2020.115945
[81]
Peris Pérez, B., Expósito Carrillo, J.A., Sánchez de La Flor, F.J., Salmerón Lissén, J.M. and Morillo Navarro, A. (2021) Thermoeconomic Analysis of CO2 Ejector-Expansion Refrigeration Cycle (EERC) for Low-Temperature Refrigeration in Warm Climates. AppliedThermalEngineering, 188, Article ID: 116613. https://doi.org/10.1016/j.applthermaleng.2021.116613
[82]
Elbarghthi, A.F.A., Hafner, A., Banasiak, K. and Dvorak, V. (2021) An Experimental Study of an Ejector-Boosted Transcritical R744 Refrigeration System Including an Energy Analysis. EnergyConversionandManagement, 238, Article ID: 114102. https://doi.org/10.1016/j.enconman.2021.114102
[83]
Liu, X., Yu, K., Wan, X., Zheng, M. and Li, X. (2021) Conventional and Advanced Exergy Analyses of Transcritical CO2 Ejector Refrigeration System Equipped with Thermoelectric Subcooler. EnergyReports, 7, 1765-1779. https://doi.org/10.1016/j.egyr.2021.03.023
[84]
Liu, J., Liu, Y. and Yu, J. (2021) Performance Analysis of a Modified Dual-Ejector and Dual-Evaporator Transcritical CO2 Refrigeration Cycle for Supermarket Application. InternationalJournalofRefrigeration, 131, 109-118. https://doi.org/10.1016/j.ijrefrig.2021.06.010
[85]
Expósito-Carrillo, J.A., Sánchez-de La Flor, F.J., Perís-Pérez, B. and Salmerón-Lissén, J.M. (2021) Thermodynamic Analysis of the Optimal Operating Conditions for a Two-Stage CO2 Refrigeration Unit in Warm Climates with and without Ejector. AppliedThermalEngineering, 185, Article ID: 116284. https://doi.org/10.1016/j.applthermaleng.2020.116284
[86]
Purjam, M., Thu, K. and Miyazaki, T. (2021) Thermodynamic Modeling of an Improved Transcritical Carbon Dioxide Cycle with Ejector: Aiming Low-Temperature Refrigeration. AppliedThermalEngineering, 188, Article ID: 116531. https://doi.org/10.1016/j.applthermaleng.2020.116531
[87]
Gullo, P. (2021) Impact and Quantification of Various Individual Thermodynamic Improvements for Transcritical R744 Supermarket Refrigeration Systems Based on Advanced Exergy Analysis. EnergyConversionandManagement, 229, Article ID: 113684. https://doi.org/10.1016/j.enconman.2020.113684
[88]
Sun, J., Im, P., Bae, Y., Munk, J., Kuruganti, T. and Fricke, B. (2021) Fault Detection of Low Global Warming Potential Refrigerant Supermarket Refrigeration System: Experimental Investigation. CaseStudiesinThermalEngineering, 26, Article ID: 101200. https://doi.org/10.1016/j.csite.2021.101200
[89]
Azzolin, M., Cattelan, G., Dugaria, S., Minetto, S., Calabrese, L. and Del Col, D. (2021) Integrated CO2 Systems for Supermarkets: Field Measurements and Assessment for Alternative Solutions in Hot Climate. AppliedThermalEngineering, 187, Article ID: 116560. https://doi.org/10.1016/j.applthermaleng.2021.116560
[90]
Tsamos, K.M., Ge, Y.T., Santosa, I., Tassou, S.A., Bianchi, G. and Mylona, Z. (2017) Energy Analysis of Alternative CO2 Refrigeration System Configurations for Retail Food Applications in Moderate and Warm Climates. EnergyConversionandManagement, 150, 822-829. https://doi.org/10.1016/j.enconman.2017.03.020
[91]
Sun, Z., Li, J., Liang, Y., Sun, H., Liu, S., Yang, L., etal. (2020) Performance Assessment of CO2 Supermarket Refrigeration System in Different Climate Zones of China. EnergyConversionandManagement, 208, Article ID: 112572. https://doi.org/10.1016/j.enconman.2020.112572
[92]
Berends, E. (2006) 7th IIF Gustav Lorentzen Conference on Natural Working Fluids, International Institute of Refrigeration.
[93]
Wang, P., Li, M., Song, R., Zhan, H., and Chin, J. (2020) Analysis and Research on Artificial Ice Rink with CO2 Transcritical/Subcritical Cooling. https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=Wang%2C+P.%2C+Li%2C+M.%2C+Song%2C+R.%2C+Zhan%2C+H.%2C+and+Chin%2C+J.+%282020%29+Analysis+and+Research+on+Artificial+Ice+Rink+with+CO2+Transcritical%2FSubcritical+Cooling&btnG
[94]
Girip, A., Ilie, A. and Calotă, R. (2023) Comparative Study Regarding Retrofitting with a Low GWP Refrigerant in an Ice Rink with Energy Recovery Implementation. IOPConferenceSeriesEarthandEnvironmentalSciences, 1185, Article 012012 https://doi.org/10.1088/1755-1315/1185/1/012012
[95]
Maeda, S., Thu, K., Maruyama, T. and Miyazaki, T. (2018) Critical Review on the Developments and Future Aspects of Adsorption Heat Pumps for Automobile Air Conditioning. AppliedSciences, 8, Article 2061. https://doi.org/10.3390/app8112061
[96]
Kowsky, C., Wolfe, E., Leitzel, L. and Oddi, F. (2012) Unitary HPAC System. SAEInternationalJournalofPassengerCars—MechanicalSystems, 5, 1016-1025. https://doi.org/10.4271/2012-01-1050
[97]
Chen, Y., Zou, H., Dong, J., Wu, J., Xu, H. and Tian, C. (2021) Experimental Investigation on the Heating Performance of a CO2 Heat Pump System with Intermediate Cooling for Electric Vehicles. AppliedThermalEngineering, 182, Article ID: 116039. https://doi.org/10.1016/j.applthermaleng.2020.116039
[98]
Wang, Y., Dong, J., Jia, S. and Huang, L. (2021) Experimental Comparison of R744 and R134a Heat Pump Systems for Electric Vehicle Application. InternationalJournalofRefrigeration, 121, 10-22. https://doi.org/10.1016/j.ijrefrig.2020.10.026
[99]
Ji, H., Pei, J., Cai, J., Ding, C., Guo, F. and Wang, Y. (2023) Review of Recent Advances in Transcritical CO2 Heat Pump and Refrigeration Cycles and Their Development in the Vehicle Field. Energies, 16, Article 4011. https://doi.org/10.3390/en16104011
[100]
Wu, W., Skye, H.M. and Dyreby, J.J. (2021) Modeling and Experiments for a CO2 Ground-Source Heat Pump with Subcritical and Transcritical Operation. EnergyConversionandManagement, 243, Article ID: 114420. https://doi.org/10.1016/j.enconman.2021.114420
[101]
Liu, X., Hu, Y., Wang, Q., Yao, L. and Li, M. (2021) Energetic, Environmental and Economic Comparative Analyses of Modified Transcritical CO2 Heat Pump System to Replace R134a System for Home Heating. Energy, 229, Article ID: 120544. https://doi.org/10.1016/j.energy.2021.120544
[102]
Ghazizade-Ahsaee, H. and Baniasad Askari, I. (2020) The Application of Thermoelectric and Ejector in a CO2 Direct-Expansion Ground Source Heat Pump; Energy and Exergy Analysis. EnergyConversionandManagement, 226, Article ID: 113526. https://doi.org/10.1016/j.enconman.2020.113526
[103]
Feng, F., Zhang, Z., Liu, X., Liu, C. and Hou, Y. (2020) The Influence of Internal Heat Exchanger on the Performance of Transcritical CO2 Water Source Heat Pump Water Heater. Energies, 13, Article 1787. https://doi.org/10.3390/en13071787
[104]
Cui, Q., Wei, D., Gao, E., Zhang, Z. and Zhang, X. (2023) Experimental Study on the Performance and Control Strategy of a Water-Cooled Subcooler-Assisted Carbon Dioxide Heat Pump for Combined Cooling and Heating. EnergyConversionandManagement, 279, Article ID: 116761. https://doi.org/10.1016/j.enconman.2023.116761
[105]
Wang, E., Peng, N. and Zhang, M. (2021) System Design and Application of Supercritical and Transcritical CO2 Power Cycles: A Review. FrontiersinEnergyResearch, 9, Article 723875. https://doi.org/10.3389/fenrg.2021.723875
[106]
Ahn, Y., Bae, S.J., Kim, M., Cho, S.K., Baik, S., Lee, J.I., etal. (2015) Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development. NuclearEngineeringandTechnology, 47, 647-661. https://doi.org/10.1016/j.net.2015.06.009
[107]
Bae, S.J., Lee, J., Ahn, Y. and Lee, J.I. (2015) Preliminary Studies of Compact Brayton Cycle Performance for Small Modular High Temperature Gas-Cooled Reactor System. AnnalsofNuclearEnergy, 75, 11-19. https://doi.org/10.1016/j.anucene.2014.07.041
[108]
Yoon, H.J., Ahn, Y., Lee, J.I. and Addad, Y. (2012) Potential Advantages of Coupling Supercritical CO2 Brayton Cycle to Water Cooled Small and Medium Size Reactor. NuclearEngineeringandDesign, 245, 223-232. https://doi.org/10.1016/j.nucengdes.2012.01.014
[109]
Qu, X.H., Yang, X.Y. and Wang, J. (2017) A Study on Different Thermodynamic Cycle Schemes Coupled with a High Temperature Gas-Cooled Reactor. AnnalsofNuclearEnergy, 106, 185-194. https://doi.org/10.1016/j.anucene.2017.03.033
[110]
Utamura, M. (2010) Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines. JournalofEngineeringforGasTurbinesandPower, 132, Article ID: 111701. https://doi.org/10.1115/1.4001052
[111]
Halimi, B. and Suh, K.Y. (2012) Computational Analysis of Supercritical CO2 Brayton Cycle Power Conversion System for Fusion Reactor. EnergyConversionandManagement, 63, 38-43. https://doi.org/10.1016/j.enconman.2012.01.028
[112]
Moisseytsev, A. and Sienicki, J.J. (2009) Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor. NuclearEngineeringandDesign, 239, 1362-1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
[113]
Hou, S., Zhou, Y., Yu, L., Zhang, F., Cao, S. and Wu, Y. (2018) Optimization of a Novel Cogeneration System Including a Gas Turbine, a Supercritical CO2 Recompression Cycle, a Steam Power Cycle and an Organic Rankine Cycle. EnergyConversionandManagement, 172, 457-471. https://doi.org/10.1016/j.enconman.2018.07.042
[114]
Manjunath, K., Sharma, O.P., Tyagi, S.K. and Kaushik, S.C. (2018) Thermodynamic Analysis of a Supercritical/Transcritical CO2 Based Waste Heat Recovery Cycle for Shipboard Power and Cooling Applications. EnergyConversionandManagement, 155, 262-275. https://doi.org/10.1016/j.enconman.2017.10.097
[115]
Yao, Y., Shi, L., Tian, H., Wang, X., Sun, X., Zhang, Y., etal. (2022) Combined Cooling and Power Cycle for Engine Waste Heat Recovery Using CO2-Based Mixtures. Energy, 240, Article ID: 122471. https://doi.org/10.1016/j.energy.2021.122471
[116]
Ma, X., Jiang, P. and Zhu, Y. (2022) Performance Analysis and Dynamic Optimization of Integrated Cooling and Power Generation System Based on Supercritical CO2 Cycle for Turbine-Based Combined Cycle Engine. AppliedThermalEngineering, 215, Article ID: 118867. https://doi.org/10.1016/j.applthermaleng.2022.118867
[117]
Li, L., Tian, H., Liu, P., Shi, L. and Shu, G. (2021) Optimization of CO2 Transcritical Power Cycle (CTPC) for Engine Waste Heat Recovery Based on Split Concept. Energy, 229, Article ID: 120718. https://doi.org/10.1016/j.energy.2021.120718
[118]
Fang, Z., Dong, X., Tang, X., Lv, Z., Qiao, X., Wang, L., etal. (2023) Study on Supercritical CO2 Power Cycles for Natural Gas Engine Energy Cascade Utilization. AppliedThermalEngineering, 225, Article ID: 120255. https://doi.org/10.1016/j.applthermaleng.2023.120255
[119]
Elattar, H.F. and Nada, S.A. (2022) Enhancing the Performance of a CO2 Combined Refrigeration and Power (CRP) Cycle Driven by Engine Exhaust Gas by Using Heat Exchangers in Optimized Locations. EnergyConversionandManagement, 264, Article ID: 115727. https://doi.org/10.1016/j.enconman.2022.115727
[120]
Zhang, Y., Peng, M., Xia, G., Wang, G. and Zhou, C. (2020) Performance Analysis of S-CO2 Recompression Brayton Cycle Based on Turbomachinery Detailed Design. NuclearEngineeringandTechnology, 52, 2107-2118. https://doi.org/10.1016/j.net.2020.02.016
[121]
Zhang, S., Xu, X., Liu, C. and Dang, C. (2020) A Review on Application and Heat Transfer Enhancement of Supercritical CO2 in Low-Grade Heat Conversion. AppliedEnergy, 269, Article ID: 114962. https://doi.org/10.1016/j.apenergy.2020.114962
[122]
Song, J., Li, X., Ren, X. and Gu, C. (2018) Performance Improvement of a Preheating Supercritical CO2 (S-CO2) Cycle Based System for Engine Waste Heat Recovery. EnergyConversionandManagement, 161, 225-233. https://doi.org/10.1016/j.enconman.2018.02.009
[123]
Jin, Q., Xia, S. and Chen, L. (2023) A Modified Recompression S-CO2 Brayton Cycle and Its Thermodynamic Optimization. Energy, 263, Article ID: 126015. https://doi.org/10.1016/j.energy.2022.126015
[124]
Tsimpoukis, D., Syngounas, E., Bellos, E., Koukou, M., Tzivanidis, C., Anagnostatos, S., etal. (2023) Optimization Analysis of Organic Rankine Cycle Powered by Waste Heat of a Supermarket Transcritical CO2 Multi-Ejector Refrigeration Cycle. JournalofCleanerProduction, 418, Article ID: 138106. https://doi.org/10.1016/j.jclepro.2023.138106
[125]
Garg, P., Kumar, P. and Srinivasan, K. (2013) Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power. TheJournalofSupercriticalFluids, 76, 54-60. https://doi.org/10.1016/j.supflu.2013.01.010
[126]
Al-Sulaiman, F.A. and Atif, M. (2015) Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated with a Solar Power Tower. Energy, 82, 61-71. https://doi.org/10.1016/j.energy.2014.12.070
[127]
Singh, R., Miller, S.A., Rowlands, A.S. and Jacobs, P.A. (2013) Dynamic Characteristics of a Direct-Heated Supercritical Carbon-Dioxide Brayton Cycle in a Solar Thermal Power Plant. Energy, 50, 194-204. https://doi.org/10.1016/j.energy.2012.11.029
[128]
Wang, X., Liu, Q., Lei, J., Han, W. and Jin, H. (2018) Investigation of Thermodynamic Performances for Two-Stage Recompression Supercritical CO2 Brayton Cycle with High Temperature Thermal Energy Storage System. EnergyConversionandManagement, 165, 477-487. https://doi.org/10.1016/j.enconman.2018.03.068
[129]
Son, S., Baek, J.Y., Jeong, Y. and Lee, J.I. (2020) Impact of Turbomachinery Degradation on Performance and Dynamic Behavior of Supercritical CO2 Cycle. JournalofEngineeringforGasTurbinesandPower, 142, Article ID: 091007. https://doi.org/10.1115/1.4047888
[130]
El Samad, T., Amaral Teixeira, J. and Oakey, J. (2020) Investigation of a Radial Turbine Design for a Utility-Scale Supercritical CO2 Power Cycle. AppliedSciences, 10, Article 4168. https://doi.org/10.3390/app10124168
[131]
Bai, W., Li, H., Zhang, X., Qiao, Y., Zhang, C., Gao, W., etal. (2022) Thermodynamic Analysis of CO2-SF6 Mixture Working Fluid Supercritical Brayton Cycle Used for Solar Power Plants. Energy, 261, Article ID: 124780. https://doi.org/10.1016/j.energy.2022.124780
[132]
Ruiz-Casanova, E., Rubio-Maya, C., Pacheco-Ibarra, J.J., Ambriz-Díaz, V.M., Romero, C.E. and Wang, X. (2020) Thermodynamic Analysis and Optimization of Supercritical Carbon Dioxide Brayton Cycles for Use with Low-Grade Geothermal Heat Sources. EnergyConversionandManagement, 216, Article ID: 112978. https://doi.org/10.1016/j.enconman.2020.112978
[133]
Chen, Y. (2006) Novel Cycles Using Carbon Dioxide as Working Fluid. School of Industrial Engineering and Management (ITM), Energy Technology. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A10578&dswid=-9126
[134]
Zhang, S., Xu, X., Liu, C. and Dang, C. (2020) A Review on Application and Heat Transfer Enhancement of Supercritical CO2 in Low-Grade Heat Conversion. AppliedEnergy, 269, Article ID: 114962. https://doi.org/10.1016/j.apenergy.2020.114962
[135]
Sarkar, J. (2012) Ejector Enhanced Vapor Compression Refrigeration and Heat Pump Systems—A Review. RenewableandSustainableEnergyReviews, 16, 6647-6659. https://doi.org/10.1016/j.rser.2012.08.007
[136]
Li, M., Wang, J., Li, S., Wang, X., He, W. and Dai, Y. (2014) Thermo-economic Analysis and Comparison of a CO2 Transcritical Power Cycle and an Organic Rankine Cycle. Geothermics, 50, 101-111. https://doi.org/10.1016/j.geothermics.2013.09.005
[137]
Zhang, F., Jiang, P. and Xu, R. (2013) System Thermodynamic Performance Comparison of CO2-EGS and Water-EGS Systems. AppliedThermalEngineering, 61, 236-244. https://doi.org/10.1016/j.applthermaleng.2013.08.007
[138]
Monjurul Ehsan, M., Guan, Z., Klimenko, A.Y. and Wang, X. (2018) Design and Comparison of Direct and Indirect Cooling System for 25 MW Solar Power Plant Operated with Supercritical CO2 Cycle. EnergyConversionandManagement, 168, 611-628. https://doi.org/10.1016/j.enconman.2018.04.072
[139]
Zhang, X., Yamaguchi, H. and Uneno, D. (2007) Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2. RenewableEnergy, 32, 2617-2628. https://doi.org/10.1016/j.renene.2007.01.003
[140]
Zhang, X., Yamaguchi, H., Fujima, K., Enomoto, M. and Sawada, N. (2005) A Feasibility Study of CO2-Based Rankine Cycle Powered by Solar Energy. JSMEInternationalJournalSeriesB, 48, 540-547. https://doi.org/10.1299/jsmeb.48.540
[141]
Zhang, X. and Yamaguchi, H. (2010) An Experimental Investigation on Characteristics of Supercritical Co2-Based Solar Rankine System. InternationalJournalofEnergyResearch, 35, 1168-1178. https://doi.org/10.1002/er.1755
[142]
Zhang, X.R. and Yamaguchi, H. (2008) An Experimental Study on Evacuated Tube Solar Collector Using Supercritical CO2. AppliedThermalEngineering, 28, 1225-1233. https://doi.org/10.1016/j.applthermaleng.2007.07.013
[143]
Autier, E. and Kouadri, A. (2009) Optimum for CO2 Transcritical Power Rankine Cycle Using Exhaust Gas from Fishing Boat Diesel Engines. IFACProceedingsVolumes, 42, 132-139. https://doi.org/10.3182/20091130-3-fr-4008.00018
[144]
Zhang, X.R., Yamaguchi, H., Fujima, K., Enomoto, M. and Sawada, N. (2006) Study of Solar Energy Powered Transcritical Cycle Using Supercritical Carbon Dioxide. InternationalJournalofEnergyResearch, 30, 1117-1129. https://doi.org/10.1002/er.1201
[145]
Farzaneh-Gord, M., Mirmohammadi, A., Behi, M. and Yahyaie, A. (2010) Heat Recovery from a Natural Gas Powered Internal Combustion Engine by CO2 Transcritical Power Cycle. ThermalScience, 14, 897-911. https://doi.org/10.2298/tsci1004897f
[146]
Li, X., Huang, H. and Zhao, W. (2014) A Supercritical or Transcritical Rankine Cycle with Ejector Using Low-Grade Heat. EnergyConversionandManagement, 78, 551-558. https://doi.org/10.1016/j.enconman.2013.11.020
[147]
Baronci, A., Messina, G., McPhail, S.J. and Moreno, A. (2015) Numerical Investigation of a MCFC (molten Carbonate Fuel Cell) System Hybridized with a Supercritical CO 2 Brayton Cycle and Compared with a Bottoming Organic Rankine Cycle. Energy, 93, 1063-1073. https://doi.org/10.1016/j.energy.2015.07.082
[148]
Liu, Y., Wang, Y. and Huang, D. (2019) Supercritical CO2 Brayton Cycle: A State-of-the-Art Review. Energy, 189, Article ID: 115900. https://doi.org/10.1016/j.energy.2019.115900
[149]
Lewis, T.G., Parma, E.J., Wright, S.A., Vernon, M.E., Fleming, D.D. and Rochau, G.E. (2011). Sandia’s Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept. ASME 2011 SmallModularReactorsSymposium, Washington DC, 28-30 September 2011, 91-94. https://doi.org/10.1115/smr2011-6612
[150]
Liao, J., Liu, X., Zheng, Q. and Zhang, H. (2016) Analysis of the Power Generation Cycle Characteristics of Supercritical Carbon Dioxide. JournalofEngineerfortheThermalEnergyandPower, 31, 40-46.
[151]
Yari, M. and Sirousazar, M. (2010) A Novel Recompression S-CO2 Brayton Cycle with Pre-Cooler Exergy Utilization. ProceedingsoftheInstitutionofMechanicalEngineers, PartA: JournalofPowerandEnergy, 224, 931-946. https://doi.org/10.1243/09576509jpe1021
[152]
Akbari, A.D. and Mahmoudi, S.M.S. (2014) Thermoeconomic Analysis & Optimization of the Combined Supercritical CO2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle. Energy, 78, 501-512. https://doi.org/10.1016/j.energy.2014.10.037
[153]
Wang, X. and Dai, Y. (2016) Exergoeconomic Analysis of Utilizing the Transcritical CO2 Cycle and the ORC for a Recompression Supercritical CO2 Cycle Waste Heat Recovery: A Comparative Study. AppliedEnergy, 170, 193-207. https://doi.org/10.1016/j.apenergy.2016.02.112
[154]
Chacartegui, R., Muñoz de Escalona, J.M., Sánchez, D., Monje, B. and Sánchez, T. (2011) Alternative Cycles Based on Carbon Dioxide for Central Receiver Solar Power Plants. AppliedThermalEngineering, 31, 872-879. https://doi.org/10.1016/j.applthermaleng.2010.11.008
[155]
S. Mahmoudi, S., D. Akbari, A. and Rosen, M. (2016) Thermoeconomic Analysis and Optimization of a New Combined Supercritical Carbon Dioxide Recompression Brayton/Kalina Cycle. Sustainability, 8, Article 1079. https://doi.org/10.3390/su8101079
[156]
Wu, C., Wang, S. and Li, J. (2018) Exergoeconomic Analysis and Optimization of a Combined Supercritical Carbon Dioxide Recompression Brayton/Organic Flash Cycle for Nuclear Power Plants. EnergyConversionandManagement, 171, 936-952. https://doi.org/10.1016/j.enconman.2018.06.041
[157]
Singh, R., Kearney, M.P. and Manzie, C. (2013) Extremum-Seeking Control of a Supercritical Carbon-Dioxide Closed Brayton Cycle in a Direct-Heated Solar Thermal Power Plant. Energy, 60, 380-387. https://doi.org/10.1016/j.energy.2013.08.001
[158]
Singh, R., Rowlands, A.S. and Miller, S.A. (2013) Effects of Relative Volume-Ratios on Dynamic Performance of a Direct-Heated Supercritical Carbon-Dioxide Closed Brayton Cycle in a Solar-Thermal Power Plant. Energy, 55, 1025-1032. https://doi.org/10.1016/j.energy.2013.03.049
[159]
Turchi, C. (2009) Supercritical CO2 for Application in Concentrating Solar Power Systems. Proceedingsof SCCO2PowerCycleSymposium, Golden, 2009.
[160]
Coco-Enríquez, L., Muñoz-Antón, J. and Martínez-Val, J.M. (2017) Dual Loop Line-Focusing Solar Power Plants with Supercritical Brayton Power Cycles. InternationalJournalofHydrogenEnergy, 42, 17664-17680. https://doi.org/10.1016/j.ijhydene.2016.12.128
[161]
Khatoon, S. and Kim, M. (2022) Preliminary Design and Assessment of Concentrated Solar Power Plant Using Supercritical Carbon Dioxide Brayton Cycles. EnergyConversionandManagement, 252, Article ID: 115066. https://doi.org/10.1016/j.enconman.2021.115066
[162]
Tong, Y., Duan, L., Yang, M. and Jiang, Y. (2023) Performance Analysis and Optimization Study of a New Supercritical CO2 Solar Tower Power Generation System Integrated with Steam Rankine Cycle. AppliedThermalEngineering, 232, Article ID: 121050. https://doi.org/10.1016/j.applthermaleng.2023.121050
[163]
Sun, R., Liu, M., Chen, X., Yang, K. and Yan, J. (2022) Thermodynamic Optimization on Supercritical Carbon Dioxide Brayton Cycles to Achieve Combined Heat and Power Generation. EnergyConversionandManagement, 251, Article ID: 114929. https://doi.org/10.1016/j.enconman.2021.114929
[164]
Xiao, T., Liu, C., Wang, X., Wang, S., Xu, X., Li, Q., etal. (2022) Life Cycle Assessment of the Solar Thermal Power Plant Integrated with Air-Cooled Supercritical CO2 Brayton Cycle. RenewableEnergy, 182, 119-133. https://doi.org/10.1016/j.renene.2021.10.001