全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

伞翼飞行器测控一体化设计研究
Research on the Integrated Design of TT & C of Parafoil-Craft

DOI: 10.12677/jast.2024.122012, PP. 96-104

Keywords: 伞翼飞行器,飞控,测控,LADRC,自主飞行
Parafoil-Craft
, Flight Control, TT & C, LADRC, Autonomous Flight

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对伞翼飞行器柔性大变形、非线性控制的特殊性和复杂性问题,本文提出了一种测控一体化设计方法。将传统机载飞控中的大部分飞行控制软件移植到地面站,利用地面站的软硬件资源实现飞行控制解算,并通过测控链路,将飞控指令上传至机载飞控端。这种一体化设计方法不仅简化了机载飞控端硬件设计的难度,而且充分利用了地面站软件和硬件的能力,使飞控能力更加强大便捷。为此,本文首先建立了伞翼飞行器的六自由度动力学模型,根据水平通道和垂直通道控制的需求,分别实现了LADRC控制器,完成了测控一体化中飞控软硬件及地面站软件的研制。仿真模拟和飞行试验结果表明,所设计的测控一体化方案能够有效地实现伞翼飞行器的自主飞行控制。
In order to solve the particularity and complexity of the nonlinear control of flexible and large deformation of parafoil-craft, an integrated design method of TT & C was proposed in this paper. Most of the flight control software in the traditional airborne flight control is transplanted to the ground station, the flight control solution is realized by using the software and hardware resources of the ground station, and the flight control instructions are uploaded to the airborne flight control terminal through the TT & C link. This integrated design method not only simplifies the difficulty of designing the hardware of the airborne flight control terminal, but also makes full use of the software and hardware capabilities of the ground station to make the flight control capability more powerful and convenient. To this end, this paper first establishes a 6-DOF dynamic model of parafoil-craft, implements LADRC controllers according to the requirements of horizontal channel and vertical channel control, and completes the development of a software and hardware system of flight control and ground station software in integrated TT & C. The simulation and flight test results show that the designed integrated TT & C scheme can effectively realize the autonomous flight control of the parafoil-craft.

References

[1]  Xu, W., Wang, L., Teng, H., et al. (2020) Research on Development of Large Powered Para-Foil Aircraft. Spacecraft Recovery & Remote Sensing, 41, 55-63.
[2]  吕斐凯, 贺卫亮. 无人机翼伞回收系统刚柔耦合动力学建模方法[J]. 航天返回与遥感, 2021, 42(5): 1-11.
[3]  Kumar, P., Sonkar, S., Ghosh, A.K., et al. (2020) Dynamic Waypoint Navigation and Control of Light Weight Powered Paraglider. 2020 IEEE Aerospace Conference, Big Sky, MT, 7-14 March 2020, 1-8.
https://doi.org/10.1109/AERO47225.2020.9172564
[4]  Tanaka, K., Tanaka, M., Takahashi, Y., et al. (2017) A Waypoint Following Control Design for a Paraglider Model with Aerodynamic Uncertainty. IEEE/ASME Transactions on Mechatronics, 23, 518-523.
https://doi.org/10.1109/TMECH.2017.2728678
[5]  Lissaman, P. and Brown, G. (1993) Apparent Mass Effects on Parafoil Dynamics. Aerospace Design Conference, Irvine, 16-19 February 1993, 233.
https://doi.org/10.2514/6.1993-1236
[6]  Barrows, T.M. (2002) Apparent Mass of Parafoils with Spanwise Camber. Journal of Aircraft, 39, 445-451.
https://doi.org/10.2514/2.2949
[7]  Prakash, O. and Ananthkrishnan, N. (2006) Modeling and Simulation of 9-DOF Parafoil-Payload System Flight Dynamics. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Keystone, 21-24 August 2006, 1-26.
https://doi.org/10.2514/6.2006-6130
[8]  Toglia, C., Vendittelli, M. and Lanari, L. (2010) Path Following for an Autonomous Paraglider. 49th IEEE Conference on Decision and Control (CDC), Atlanta, 15-17 December 2010, 4869-4874.
https://doi.org/10.1109/CDC.2010.5717849
[9]  潘银松, 丁建军, 黄宇坤, 等. 一种小型无人机飞行控制系统的研究与设计[J]. 电子测量技术, 2013, 36(2): 100-103.
[10]  高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510.
[11]  陈增强, 程赟, 孙明玮, 等. 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46(3): 257-266.
[12]  韩京清. 从PID技术到“自抗扰控制技术” [J]. 控制工程, 2002, 9(3): 10-18.
[13]  要晓梅, 王庆林, 刘文丽, 等. 一般工业对象的二阶自抗扰控制[J]. 控制工程, 2002, 9(5): 4-8.
[14]  Gao, H.T., Sun, Q.L., Kang, X.F., Sun, M.W. and Chen, Z.Q. (2012) Parafoil Trajectory Tracking Control Based on Data Expansion ADRC. Proceedings of the 31st Chinese Control Conference, Hefei, 25-27 July 2012, 2975-2980.
[15]  贾洪琛, 孙青林, 孙昊, 等. 动力翼伞地面站的设计和实现[J]. 计算机应用, 2018, 38(z1): 240-244.
[16]  Chambers, J.R. (2007) Longitudinal Dynamic Modeling and Control of Powered Parachute Aircraft. Master’s Thesis, Rochester Institute of Technology, New York.
[17]  Park, S., Deyst, J. and How, J. (2004) A New Nonlinear Guidance Logic for Trajectory Tracking. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, 16-19 August 2004, 1-16.
https://doi.org/10.2514/6.2004-4900
[18]  檀盼龙. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报, 2017, 51(5): 20-25.
[19]  陶金, 孙青林, 陈增强, 等. 伞翼无人机线性自抗扰高度控制[J]. 国防科技大学学报, 2017, 39(6): 103-110.
[20]  张凌浩, 王胜, 周辉, 等. 基于MAVLink协议的无人机系统安全通信方案[J]. 计算机应用, 2020, 40(8): 2286-2292.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133