|
时滞在线社交网络谣言传播模型的动力学分析
|
Abstract:
本文考虑了在谣言传播过程中,政府干预带来的时滞效应,建立了时滞在线社交网络谣言传播模型。运用常微分方程稳定性的相关知识讨论了正平衡点E*的存在性以及稳定性问题,并证明得到了其发生Hopf分岔的判别条件。发现在满足相应条件下,当时滞不超过临界值时,正平衡点E*局部渐进稳定,当超出临界值时,正平衡点E*将由稳定变为不稳定。最后,通过数值来仿真模拟正平衡点的局部稳定性,并验证理论的正确性。
This paper considers the time delay effect brought by government intervention in the process of rumor propagation and establishes a time-delayed online social network rumor propagation model. By using knowledge related to the stability of ordinary differential equations, the existence and stability of the positive equilibrium point are discussed, and the discriminant conditions for Hopf bifurcation are proved. It is found that under the corresponding conditions, when the time delay does not exceed the critical value, the positive equilibrium point is locally asymptotically stable, and when it exceeds the critical value, the positive equilibrium point changes from stable to unstable. Finally, numerical simulations are conducted to verify the local stability of the positive equilibrium point and validate the correctness of the theory.
[1] | Daley, D.J. and Kendall, D.G. (1964) Epidemics and Rumours. Nature, 204, 1118-1118. https://doi.org/10.1038/2041118a0 |
[2] | Zanette, D.H. (2002) Dynamics of Rumor Propagation on Small-World Networks. Physical Review E, 65, 041908. https://doi.org/10.1103/physreve.65.041908 |
[3] | Maki, D. and Thomson, M. (1973) Mathematical Model and Applications. Prentice-Hall, Englewood Cliffs, 5, 75-81. |
[4] | Xiao, Y., Chen, D., Wei, S., Li, Q., Wang, H. and Xu, M. (2018) Rumor Propagation Dynamic Model Based on Evolutionary Game and Anti-Rumor. Nonlinear Dynamics, 95, 523-539. https://doi.org/10.1007/s11071-018-4579-1 |
[5] | 张菊平, 郭昊明, 荆文君, 靳祯. 基于真实信息传播者的谣言传播模型的动力学分析[J]. 物理学报, 2019, 68(15): 193-204. |
[6] | Yao, Y., Xiao, X., Zhang, C., Dou, C. and Xia, S. (2019) Stability Analysis of an SDILR Model Based on Rumor Recurrence on Social Media. Physica A: Statistical Mechanics and Its Applications, 535, 122236. https://doi.org/10.1016/j.physa.2019.122236 |
[7] | Zhao, H. and Zhu, L. (2016) Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model. International Journal of Bifurcation and Chaos, 26, 1650101. https://doi.org/10.1142/s0218127416501017 |
[8] | Hu, Y., Pan, Q., Hou, W. and He, M. (2018) Rumor Spreading Model with the Different Attitudes towards Rumors. Physica A: Statistical Mechanics and Its Applications, 502, 331-344. https://doi.org/10.1016/j.physa.2018.02.096 |
[9] | 赵敏, 陈文霞, 张平正. 在线社交网络中谣言传播模型的稳定性分析[J]. 扬州大学学报: 自然科学版, 2018, 21(2): 21-24. |
[10] | 朱霖河, 汤宇轩. 时滞谣言传播模型的动力学分析[J]. 数学的实践与认识, 2022, 52(10): 250-256. |