Healthcare wastes contain potentially harmful microorganisms, inorganic and organic compounds that pose a risk to human health and the environment. Incineration is a common method employed in healthcare waste management to reduce volume, quantity, toxicity as well as elimination of microorganisms. However, some of the substances remain unchanged during incineration and become part of bottom ash, such as heavy metals and persistent organic pollutants. Monitoring of pollution by heavy metals is important since their concentrations in the environment affect public health. The goal of this study was to determine the levels of Copper (Cu), Zinc (Zn) Lead (Pb), Cadmium (Cd) and Nickel (Ni) in the incinerator bottom ash in five selected County hospitals in Kenya. Bottom ash samples were collected over a period of six months. Sample preparation and treatment were done using standard methods. Analysis of the heavy metals were done using atomic absorption spectrophotometer, model AA-6200. One-Way Analysis of Variance (ANOVA) was performed to determine whether there were significant differences on the mean levels of Cu, Zn, Pd, Cd and Ni in incinerator bottom ash from the five sampling locations. A post-hoc Tukey’s Test (HSD) was used to determine if there were significant differences between and within samples. The significant differences were accepted at p ≤ 0.05. To standardize the results, overall mean of each metal from each site was calculated. The metal mean concentration values were compared with existing permissible levels set by the WHO. The concentrations (mg/kg) were in the range of 102.27 - 192.53 for Cu, Zn (131.68 - 2840.85), Pb (41.06 - 303.96), Cd (1.92 - 20.49) whereas Ni was (13.83 - 38.27) with a mean of 150.76 ± 77.88 for Copper, 131.66 ± 1598.95 for Zinc, 234.60 ± 262.76 for Lead, 12.256 ± 10.86 for Cadmium and 29.45 ± 18.24 for Nickel across the five sampling locations. There were significant differences between levels determined by one-way ANOVA of Zn (F (4, 25) = 6.893, p = 0.001, p ≤ 0.05) and Cd (F (4, 25) = 5.641, p = 0.02) and none with Cu (F (4, 25) = 1.405, p = 0.261, p ≤ 0.05), Pb (F (4, 25) = 1.073, p = 0.391, p ≤ 0.05) and Ni (F (4, 25) = 2.492, p = 0.069). Results reveal that metal content in all samples exceed the WHO permissible levels for Cu (100 mg/kg), while those for Ni were below the WHO set standards of 50 mg/kg. Levels of Zn in three hospitals exceeded permissible level of 300 mg/kg while level of Pb
References
[1]
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egyptian Journal of Petroleum, 25, 107-123. https://doi.org/10.1016/j.ejpe.2015.03.011
[2]
Adu, R. O., Gyasi, S. F., Essumang, D. K., & Otabil, K. B. (2020). Medical Waste-Sorting and Management Practices in Five Hospitals in Ghana. Journal of Environmental and Public Health, 2020. https://doi.org/10.1155/2020/2934296
[3]
Agency for Toxic Substances and Disease Registry (ATSDR) (2020). Toxicological Profile for Lead. US Department of Health and Human Services. https://doi.org/10.15620/cdc:95222
[4]
Agency for Toxic Substances and Disease Registry (ATSDR) (2022). Toxicological Profile for Copper. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=206&tid=37
[5]
Akulume, M., & Kiwanuka, S. N. (2016). Health Care Waste Segregation Behavior among Health Workers in Uganda: An Application of the Theory of Planned Behavior. Journal of Environmental and Public Health, 2016, Article ID: 8132306. https://doi.org/10.1155/2016/8132306
[6]
Allawzi, M., Al-harahsheh, M., & Hussein Allaboun, H. (2018). Characterization and Leachability Propensity of Bottom Ash from Medical Waste Incineration. Water, Air, and Soil Pollution, 229, Article No. 153. https://doi.org/10.1007/s11270-018-3810-5
[7]
American Public Health Association (APHA) (1995). Standard Methods for Examination of Water and Waste Water (19th ed.). American Public Health Association Inc. https://law.resource.org/pub/us/cfr/ibr/002/apha.method.2320.1992.html
[8]
Amfo-Otu, R., Sarah Graham Kyerewaa, S. G., Adu Ofori, E., & Sadick, A. (2015). Comparative Study of Heavy Metals in Bottom Ash from Incinerators and Open Pit from Healthcare Facilities in Ghana. Octa Journal of Environmental Research, 3, 50-56. http://www.sciencebeingjournal.com
[9]
Angerer, J., Heinzow, B., Reimann, D. O., Knor, W., & Lehnert, G. (1992). Internal Exposure to Organic Substances in a Municipal Waste Incinerator. International Archives of Occupational and Environmental Health, 64, 265-273. https://doi.org/10.1007/BF00378285
[10]
Anozie, O. B., Lawani, L. O., Eze, J. N., Mamah, E. J., Onoh, R. C., Ogah, E. O., Umezurike, D. A., & Anozie, R. O. (2017). Knowledge, Attitude and Practice of Healthcare Managers to Medical Waste Management and Occupational Safety Practices: Findings from Southeast Nigeria. Journal of Clinical and Diagnostic Research, 11, IC01-IC04. https://doi.org/10.7860/JCDR/2017/24230.9527
[11]
Arab, M., Rouhollah Askari, B., Tajvar, M., Pourreza, A., Omrani, G., & Mahmoudi, M. (2008). Report: The Assessment of Hospital Waste Management: A Case Study in Tehran. Waste Management & Research: The Journal for a Sustainable Circular Economy, 26, 304-308. https://doi.org/10.1177/0734242X08093598
[12]
Awodele, O., Adewoye, A. A., & Oparah, A. C. (2016). Assessment of Medical Waste Management in Seven Hospitals in Lagos, Nigeria. BMC Public Health, 16, Article No. 269. https://doi.org/10.1186/s12889-016-2916-1
[13]
Bakkali, M. E. L., Bahri, M., Gmouh, S., Jaddi, H., Bakkali, M., Laglaoui, A., & Mzibri, M. E. L. (2013). Characterization of Bottom Ash from Two Hospital Waste Incinerators in Rabat, Morocco. Waste Management and Research, 31, 1228-1236. https://doi.org/10.1177/0734242X13507308
[14]
Bayuseno, A. P., & Schmahl, W. W. (2011). Characterization of MSWI Fly Ash through Mineralogy and Water Extraction. Resources, Conservation and Recycling, 55, 524-534. https://doi.org/10.1016/j.resconrec.2011.01.002
[15]
Beyersmann, D. (2002). Effects of Carcinogenic Metals on Gene Expression. Toxicological Letters, 127, 63-68. https://doi.org/10.1016/S0378-4274(01)00484-2
[16]
Beylot, A., Hochar, A., Michel, P., Descat, M., Ménard, Y., & Villeneuve, J. (2018). Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency. Journal of Industrial Ecology, 22, 1016-1026. https://doi.org/10.1111/jiec.12701
[17]
Bokhoree, C., Beeharry, Y., Makoondlall-Chadee, T., Doobah, T., & Soomary, N. (2014). Assessment of Environmental and Health Risks Associated with the Management of Medical Waste in Mauritius. APCBEE Procedia, 9, 36-41. https://doi.org/10.1016/j.apcbee.2014.01.007
[18]
Bucătaru, C., Săvescu, D., Repanovici, A., Blaga, L., Coman, E., & Cocuz, M. E. (2021). The Implications and Effects of Medical Waste on Development of Sustainable Society—A Brief Review of the Literature. Sustainability, 13, Article 3300. https://doi.org/10.3390/su13063300
[19]
Chartier, Y., & World Health Organization (WHO) (2014). Safe Management of Wastes from Health-Care Activities. https://www.who.int/publications/i/item/9789241548564
[20]
Chiroma, T. M., Ebewele, R. O., & Hymore, F. K. (2014). Comparative Assessment of Heavy Metal Levels in Soil, Vegetables and Urban Grey Wastewater Used for Irrigation in Yola and Kano. International Refereed Journal of Engineering and Science (IRJES), 3, 1-9. https://www.irjes.com/
[21]
Chisholm, J. M., Zamani, R., Negm, A. M., Said, N., Abdel Daiem, M. M., Dibaj M., & Akrami, M. (2021). Sustainable Waste Management of Medical Waste in African Developing Countries: A Narrative Review. Waste Management & Research: The Journal for a Sustainable Circular Economy, 39, 1149-1163. https://doi.org/10.1177/0734242X211029175
[22]
Cotran, R. S., Kumar, V., & Robbins, S. L. (1989). Robbins Pathologic Basis of Disease. W.B. Saunders Company. https://epdf.tips/pathologic-basis-of-disease.html
[23]
de Titto, E., & Savino, A. (2019). Environmental and Health Risks Related to Waste Incineration. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37, 976-986. https://doi.org/10.1177/0734242X19859700
[24]
Debrah, J. K., Vidal, D. G., & Dinis, M. A. P. (2022). Environmental Waste Sustainability: Organic Valorisation and Socioeconomic Benefits towards Sustainable Development in Ghana. In W. Leal Filho, D. G. Vidal, M. A. P. Dinis, & R. C. Dias (Eds.), Sustainable Policies and Practices in Energy, Environment and Health Research(pp. 425-437). Springer. https://doi.org/10.1007/978-3-030-86304-3_24
[25]
Dehghani, M. H., Ahrami, H. D., Nabizadeh, R., Heidarinejad, Z., & Zarei, A. (2019). Medical Waste Generation and Management in Medical Clinics in South of Iran. MethodsX, 6, 727-733. https://doi.org/10.1016/j.mex.2019.03.029
[26]
Dinis, M. A. P., Neto, B., Begum, H., & Vidal, D. G. (2022). Editorial: Waste Challenges in the Context of Broad Sustainability Challenges. Frontiers in Environmental Science, 10, Article 964366. https://doi.org/10.3389/fenvs.2022.964366
[27]
Domingo, J. L., Marquès, M., Mari, M., & Schuhmacher, M. (2020). Adverse Health Effects for Populations Living Near Waste Incinerators with Special Attention to Hazardous Waste Incinerators. A Review of the Scientific Literature. Environmental Research, 187, Article ID: 109631. https://doi.org/10.1016/j.envres.2020.109631
[28]
Dominic, B. (2016). Design, Construction and Testing of a Flue Gas Filter System for Small Scale Incinerators. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi. https://ir.knust.edu.gh/handle/123456789/10162
[29]
El-Amaireh, N. A. A., Al-Zoubi, H., & Al-Khashman, O. A. (2023). Hospital Waste Incinerator Ash: Characteristics, Treatment Techniques, and Applications (A Review). Journal of Water and Health, 21, 1686-1702. https://doi.org/10.2166/wh.2023.299
[30]
Elliott, P., Shaddick, G., Kleinschmidt, I., Jolley, D., Walls, P., Beresford, J., & Grundy, C. (1996). Cancer Incidence Near Municipal Solid Waste Incinerators in Great Britain. British Journal of Cancer, 73, 702-710. https://doi.org/10.1038/bjc.1996.122
[31]
Feder, J. N., Gnirke, A., Thomas, W., Tsuchihashi, Z., Ruddy, D. A., Basava, A., Dormishian, F., Domingo Jr., R., Ellis, M. C., Fullan, A., Hinton, L. M., Jones, N. L., Kimmel, B. E., Kronmal, G. S., Lauer, P., Lee, V. K., Loeb, D. B., Mapa, F. A., McClelland, E., Meyer, N. C., Mintier, G. A., Moeller, N., Moore, T., Morikang, E., Prass, C. E., Quintana, L., Starnes, S. M., Schatzman, R. C., Brunke, K. J., Drayna, D. T., Risch, N. J., Bacon, B. R., & Wolff, R. K. (1996). A Novel MHC Class I-Like Gene Is Mutated in Patients with Hereditary Haemochromatosis. Nature Genetics, 13, 399-408. https://doi.org/10.1038/ng0896-399
[32]
Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., Ran, H., & Xu, W. (2020). A Dynamic Model to Evaluate the Critical Loads of Heavy Metals in Agricultural Soil. Ecotoxicology and Environmental Safety, 197, Article ID: 110607. https://doi.org/10.1016/j.ecoenv.2020.110607
[33]
Ghanei Gheshlagh, R., Aslani, M., Shabani, F., Dalvand, S., & Parizad, N. (2018). Prevalence of Needlestick and Sharps Injuries in the Healthcare Workers of Iranian Hospitals: An Updated Meta-Analysis. Environmental Health and Preventive Medicine, 23, Article No. 44. https://doi.org/10.1186/s12199-018-0734-z
[34]
Gidarakos, E., Petrantonaki, M., Anastasiadou, K., & Schramm, K. W. (2009). Characterization and Hazard Evaluation of Bottom Ash Produced from Incinerated Hospital Waste. Journal of Hazardous Materials, 172, 935-942. https://doi.org/10.1016/j.jhazmat.2009.07.080
[35]
Githinji, M., Njogu, P., Nganga, Z., & Karama, M. (2024). Levels of Polycyclic Aromatic Hydrocarbons (PAHs) in Healthcare Waste Incinerators’ Bottom Ash from Five County Hospitals in Kenya. Journal of Environmental Protection, 15, 318-337. https://doi.org/10.4236/jep.2024.153018
[36]
Gomes, H. I., Funari, V., & Ferrari, R. (2020). Bioleaching for Resource Recovery from Low-Grade Wastes Like Fly and Bottom Ashes from Municipal Incinerators: A SWOT Analysis. Science of the Total Environment, 715, Article ID: 136945. https://doi.org/10.1016/j.scitotenv.2020.136945
[37]
Hasan, M. M., & Rahman, M. H. (2018). Assessment of Healthcare Waste Management Paradigms and Its Suitable Treatment Alternative: A Case Study. Journal of Environmental and Public Health, 2018, Article ID: 6879751. https://doi.org/10.1155/2018/6879751
[38]
Hayat, M. T., Nauman, M. N., Nazir, S., & Ali, N. (2018). Bangash Environmental Hazards of Cadmium: Past, Present, and Future Cadmium Toxic. In M. Hasanuzzaman, M. N. Vara Prasad, & M. Fujita (Eds.), Cadmium Toxicity and Tolerance in Plants (pp. 163-183). Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00007-3
[39]
Honest, A., Manyele, V. S., Saria, A., & Mbuna, J. (2020). Assessment of the Heavy Metal—Levels in the Incinerators Bottom-Ash from Different Hospitals in Dares Salaam. African Journal of Environmental Science and Technology, 14, 347-360. https://doi.org/10.5897/AJEST2020.2891
[40]
Jaber, S., Aljawad, A., Prisecaru, T., & Pop, E. (2021). The Environmental Situation of the Ash Medical Waste in Baghdad City, Iraq. E3S Web of Conferences, 286, Article ID: 02017. https://doi.org/10.1051/e3sconf/202128602017
[41]
Jahangiri, M., Rostamabadi, A., Hoboubi, N., Tadayon, N., & Soleimani, A. (2016). Needle Stick Injuries and Their Related Safety Measures among Nurses in a University Hospital, Shiraz, Iran. Safety and Health at Work, 7, 72-77. https://doi.org/10.1016/j.shaw.2015.07.006
[42]
Janik-Karpinska, E., Brancaleoni, R., Niemcewicz, M., Wojtas, W., Foco, M., Podogrocki, M., & Bijak, M. (2023). Healthcare Waste—A Serious Problem for Global Health. Healthcare, 11, Article 242. https://doi.org/10.3390/healthcare11020242
[43]
Javied, S., Tufail, M., & Khalid, S. (2008). Heavy Metal Pollution from Medical Waste Incineration at Islamabad and Rawalpindi, Pakistan. Microchemical Journal, 90, 77-81. https://doi.org/10.1016/j.microc.2008.03.010
[44]
Jose, C. C., Jagannathan, L., Tanwar, V. S., Zhang, X., Zang, C., & Cuddapah, S. (2018). Nickel Exposure Induces Persistent Mesenchymal Phenotype in Human Lung Epithelial Cells through Epigenetic Activation of ZEB1. Molecular Carcinogenesis, 57, 794-806. https://doi.org/10.1002/mc.22802
[45]
Jung, C. H., Matsuto, T., Tanaka, N., & Okada, T. (2004). Metal Distribution in Incineration Residues of Municipal Solid Waste (MSW) in Japan. Waste Management, 24, 381-391. https://doi.org/10.1016/S0956-053X(03)00137-5
[46]
Kurttio, P., Pekkanen, J., Alfthan, G., Paunio, M., & Heinonen, P. (1998). Increase Mercury Exposure in Inhabitants Living in the Vicinity of a Hazardous Waste Incinerator: A 10-Year Follow-Up. Archives of Environmental Health: An International Journal, 53, 129-137. https://doi.org/10.1080/00039896.1998.10545974
[47]
Landrigan, P. J., Stein, G. F., Kominsky, J. R., Ruhe, R. L., & Watanabe, A. S. (1987). Common Source Community and Industrial Exposure to Trichloroethylene. Archives of Environmental Health: An International Journal, 42, 327-332. https://doi.org/10.1080/00039896.1987.9934354
[48]
Leal Filho, W., Salvia, A. L., Vasconcelos, C. R. P., Anholon, R., Rampasso, I. S., Eustachio, J. H. P. P., Liakh, O., Dinis, M. A. P., Olpoc, R. C., Bandanaa, J., Aina, Y. A., Lukina, R. L., & Sharifi, A. (2022). Barriers to Institutional Social Sustainability. Sustainability Science, 17, 2615-2630. https://doi.org/10.1007/s11625-022-01204-0
[49]
Lee, W. J., Liow, M. C., Tsai, P. J., & Hsieh, L. T. (2002). Emission of Polycyclic Aromatic Hydrocarbons from Medical Waste Incinerators. Atmospheric Environment, 36, 781-790. https://doi.org/10.1016/S1352-2310(01)00533-7
[50]
Li, H., Sun, J., Gui, H., Xia, D., & Wang, Y. (2022). Physiochemical Properties, Heavy Metal Leaching Characteristics and Reutilization Evaluations of Solid Ashes from Municipal Solid Waste Incinerator Plants. Waste Management, 138, 49-58. https://doi.org/10.1016/j.wasman.2021.11.035
[51]
Linh, H. N., Tamura, H., Komiya, T., Saffarzadeh, A., & Shimaoka, T. (2020). Simulating the Impact of Heavy Rain on Leaching Behavior of Municipal Solid Waste Incineration Bottom Ash (MSWI BA) in Semi-Aerobic Landfill. Waste Management, 113, 280-293. https://doi.org/10.1016/j.wasman.2020.06.008
[52]
Loh, N., Loh, H. P., Wang, L. K., & Wang, M. H. S. (2016). Health Effects and Control of Toxic Lead in the Environment. In L., Wang, M. H., Wang, Y. T., Hung, & N. Shammas (Eds.), Natural Resources and Control Processes (pp. 233-284). Springer. https://doi.org/10.1007/978-3-319-26800-2_5
[53]
Makajic-Nikolic, D., Petrovic, N., Belic, A., Rokvic, M., Radakovic, J. A., & Tubic, V. (2016). The Fault Tree Analysis of Infectious Medical Waste Management. Journal of Cleaner Production, 113, 365-373. https://doi.org/10.1016/j.jclepro.2015.11.022
[54]
Manyele, S., Said, M., Anicetus, H., Kiyunge, A., Saria, J., Habtu, M., & Saguti, G. (2022). Diagnostic Analysis of Mechanical Conditions of Small-Scale Incinerators in the Healthcare Facilities in Tanzania. Journal of Environmental Protection, 13, 895-912. https://doi.org/10.4236/jep.2022.1311057
[55]
Matsubara, C., Sakisaka, K., Sychareun, V., Phensavanh, A., & Ali, M. (2017). Prevalence and Risk Factors of Needle Stick and Sharp Injury among Tertiary Hospital Workers, Vientiane, Lao PDR. Journal of Occupational Health, 59, 581-585. https://doi.org/10.1539/joh.17-0084-FS
[56]
Michelozza, P., Fusco, D., Forastiere, F., Ancona, C., Dell’Orco, V., & Perucci, C. A. (1998). Small Area Study of Mortality among People Living Near Multiple Sources of Air Pollution. Occupational and Environmental Medicine, 55, 611-615. https://doi.org/10.1136/oem.55.9.611
[57]
Mugo, K. K., Gichanga, J. M., Gatebe, E., & Njogu, P. M. (2015). Assessment of the Safety and Health Hazards in Existing Dumpsites in Kenya. In Proceedings of the 2015 Sustainable Research and Innovation (SRI) Conference (pp. 46-49). https://www.researchgate.net/publication/321825242_Assessment_of_the_Safety_and_Health_Hazards_in_existing_dumpsites_in_Kenya_-_SRI_journal
[58]
Mukherjee, I., Singh, U. K., & Singh, R. P. (2021). An Overview on Heavy Metal Contamination of Water System and Sustainable Approach for Remediation. In A. Singh, M. Agrawal, & S. B. Agrawal (Eds.), Water Pollution and Management Practices (pp. 255-277). Springer. https://doi.org/10.1007/978-981-15-8358-2_11
[59]
Njagi, N. A., Oloo, M. A., Kithinji, J., & Kithinji, M. J. (2012). Healthcare Waste Incineration and Related Dangers to Public Health: Case Study of the Two Teaching and Referral Hospitals in Kenya. Journal of Community Health, 37, 1168-1171. https://doi.org/10.1007/s10900-012-9578-4
[60]
Nkonge, A. N., Magambo, J. K., Kithinji, J. M., Mayabi, A. O., & Ndwiga, T. (2014). Management of Healthcare Waste in National Teaching and Referral Hospitals in Kenya. International Journal of Environment and Waste Management, 14, 199-209. https://doi.org/10.1504/IJEWM.2014.064087
[61]
Padmanabhan, K. K., & Barik, D. (2019). Health Hazards of Medical Waste and Its Disposal. In D. Barik (Ed.), Energy from Toxic Organic Waste for Heat and Power Generation (pp. 99-118). Elsevier. https://doi.org/10.1016/B978-0-08-102528-4.00008-0
[62]
Pandey, A., Ahuja, S., Madan, M., & Asthana, A. K. (2016). Bio-Medical Waste Managment in a Tertiary Care Hospital: An Overview. Journal of Clinical and Diagnostic Research, 10, DC01-DC03. https://doi.org/10.7860/JCDR/2016/22595.8822
[63]
Patra, S., Whaung S. T., & Kwan, W. L. (2017). Analysis of Heavy Metals in Incinerator Bottom Ash in Singapore and Potential Impact of Pre-Sorting on Ash Quality. Energy Procedia, 143, 454-459. https://doi.org/10.1016/j.egypro.2017.12.710
[64]
Pirkle, J. L., Kaufman, R. B., Brody, D. J., Hickman, T., Gunter, E. W., & Paschal, D. C. (1998). Exposure of the U.S. Population to Lead, 1991-1994. Environmental Health Perspectives, 106, 745-750. https://doi.org/10.1289/ehp.98106745
[65]
Racho, P., & Jindal, R. (2003). Heavy Metals in Bottom Ash from a Medical-Waste Incinerator in Thailand. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 8, 31-38. https://doi.org/10.1061/(ASCE)1090-025X(2004)8:1(31)
[66]
Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium Toxicity and Treatment: An Update. Caspian Journal of Internal Medicine, 8, 135-145.
[67]
Rahman, Z., & Singh, V. P. (2019). The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr) (VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environmental Monitoring and Assessment, 191, Article No. 419. https://doi.org/10.1007/s10661-019-7528-7
[68]
Rapiti, E., Sperati, A., Fano, V., & Dell’Orco, V. (1997). Mortality among Workers at Municipal Waste Incinerators in Rome: A Retrospective Cohort Study. American Journal of Industrial Medicine, 31, 659-661. https://doi.org/10.1002/(SICI)1097-0274(199705)31:5<659::AID-AJIM23>3.0.CO;2-X
[69]
Roney, N., Osier, M., Paikoff, S. J., Smith, C. V., Williams, M., & De Rosa, C. T. (2006). ATSDR Evaluation of the Health Effects of Zinc and Relevance to Public Health. Toxicology and Industrial Health, 22, 423-493. https://doi.org/10.1177/0748233706074173
[70]
Rushton, L. (2003). Health Hazards and Waste Management. British Medical Bulletin, 68, 183-197. https://doi.org/10.1093/bmb/ldg034
[71]
Sahiledengle, B. (2019). Self-Reported Healthcare Waste Segregation Practice and Its Correlate among Healthcare Workers in Hospitals of Southeast Ethiopia. BMC Health Services Research, 19, Article No. 591. https://doi.org/10.1186/s12913-019-4439-9
[72]
Saria, J. A. (2016). Levels of Heavy Metals in Bottom Ash from Medical Waste Incinerators in Dar es Salaam. Journal of Multidisciplinary Engineering Science Studies, 2, 599-605.
[73]
Seilkop, S. K., & Oller, A. R. (2003). Respiratory Cancer Risks Associated with Low-Level Nickel Exposure: An Integrated Assessment Based on Animal, Epidemiological, and Mechanistic Data. Regulatory Toxicology and Pharmacology, 37, 173-190. https://doi.org/10.1016/S0273-2300(02)00029-6
[74]
Selman, H., Kubba, H., Al-Mukaram, N., & Alkateeb, R. (2021). Heavy Metal Pollution from Hospital Waste Incinerators: A Case Study from Al-Muthanna Province, Iraq. IOP Conference Series: Materials Science and Engineering, 1090, Article ID: 012036. https://doi.org/10.1088/1757-899X/1090/1/012036
[75]
Singh, H., Rehman, R., & Bumb, S. (2014). Management of Biomedical Waste: A Review. International Journal of Dental and Medical Research, 1, 14-20. https://www.researchgate.net/publication/263619531
[76]
Tait, P. W., Brew, J., Che, A., Costanzo, A., Danyluk, A., Davis, M., Khalaf, A., McMahon K., Watson, A., Rowcliff, K., & Bowles, D. (2020). The Health Impacts of Waste Incineration: A Systematic Review. Australian and New Zealand Journal of Public Health, 44, 40-48. https://doi.org/10.1111/1753-6405.12939
[77]
Themba, N., Sibali, L. L., & Chokwe, T. B. (2023). A Review on the Formation and Remediation of Polychlorinated Dibenzo p-Dioxins and Dibenzo-Furans (PCDD/Fs) during Thermal Processes with a Focus on MSW Process. Air Quality, Atmosphere & Health, 16, 2115-2132. https://doi.org/10.1007/s11869-023-01394-1
[78]
Tirkey, A., Shrivastava, P., & Saxena, A. (2012). Bioaccumulation of Heavy Metals in Different Components of Two Lakes Ecosystem. Current World Environment, 7, 293-297. https://doi.org/10.12944/CWE.7.2.15
[79]
Tong, S., von Schirnding, Y. E., & Prapamontol, T. (2000). Environmental Lead Exposure: A Public Health Problem of Global Dimensions. Bulletin of World Health Organization, 78, 1068-1077.
[80]
Udofia, E. A., Gulis, G., & Fobil, J. (2017). Solid Medical Waste: A Cross Sectional Study of Household Disposal Practices and Reported Harm in Southern Ghana. BMC Public Health, 17, Article No. 464. https://doi.org/10.1186/s12889-017-4366-9
[81]
United States Environmental Protection Agency (USEPA) (2000). Annex 3: SW—846 EPA Test Methods for Evaluating Solid Wastes Physical/Chemical Methods. https://www.epa.gov/hw-sw846
[82]
Wafula, S. T., Musiime, J., & Oporia, F. (2019). Health Care Waste Management among Health Workers and Associated Factors in Primary Health Care Facilities in Kampala City, Uganda: A Cross-Sectional Study. BMC Public Health, 19, Article No. 203. https://doi.org/10.1186/s12889-019-6528-4
[83]
Wei, W., Shi, X., Wu, L., & Ni, B. J. (2021). Insights into Coconut Shell Incineration Bottom Ash Mediated Microbial Hydrogen Production from Waste Activated Sludge. Journal of Cleaner Production, 322, Article ID: 129157. https://doi.org/10.1016/j.jclepro.2021.129157
[84]
Wheatley, A. D., & Sadhra, I. S. (2004). Polycyclic Aromatic Hydrocarbons in Solid Residues from Waste Incineration. Chemosphere, 55, 743-749. https://doi.org/10.1016/j.chemosphere.2003.10.055
[85]
World Health Organization (WHO) (2017). Safe Management of Wastes from Health-Care Activities: A Summary. https://www.who.int/publications/i/item/WHO-FWC-WSH-17.05
[86]
Wrbitzky, R., Goen, T., Letzel, S., Frank, F., & Angerer, J. (1995). Internal Exposure of Waste Incineration Workers to Organic and Inorganic Substances. International Achieves of Occupational and Environmental Health, 68, 13-21. https://doi.org/10.1007/BF01831628
[87]
Xiao, H., Ru, Y., Peng, Z., Yan, D., Li, L., Karstensen, K. H., Wang, N., & Huang, Q. (2018). Destruction and Formation of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans during Pre-Treatment and Co-Processing of Municipal Solid Waste Incineration Fly Ash in a Cement Kiln. Chemosphere, 210, 779-788. https://doi.org/10.1016/j.chemosphere.2018.07.058
[88]
Yazie, T. D., Tebeje, M. G., & Chufa, K. A. (2019). Healthcare Waste Management Current Status and Potential Challenges in Ethiopia: A Systematic Review. BMC Research Notes, 12, Article No. 285. https://doi.org/10.1186/s13104-019-4316-y
[89]
Zdrojewicz, Z., Popowicz, E., & Winiarski, J. (2016). Nickel—Role in Human Organism and Toxic Effects. Polski Merkuriusz Lekarski, 41, 115-118.
[90]
Zhang, X. W., Yang, L. S., Li, Y. H., Li, H. R., Wang, W. Y., & Ye, B. X. (2012). Impacts of Lead/Zinc Mining and Smelting on the Environment and Human Health in China. Environmental Monitoring and Assessment, 184, 2261-2273. https://doi.org/10.1007/s10661-011-2115-6
[91]
Zhao, H. L., Wang, L., Liu, F., Liu, H. Q., Zhang, N., & Zhu, Y. W. (2021). Energy, Environment and Economy Assessment of Medical Waste Disposal Technologies in China. Science of the Total Environment, 796, Article ID: 148964. https://doi.org/10.1016/j.scitotenv.2021.148964