|
非霍奇金淋巴瘤的治疗研究进展
|
Abstract:
非霍奇金淋巴瘤(NHL)代表一组异质性淋巴衍生恶性肿瘤,从惰性到高度侵袭性不等。根据肿瘤细胞的来源,本病可分为B细胞淋巴瘤、T/NK细胞淋巴瘤。在B-NHL复发/难治性患者中,挽救性化疗和自体干细胞移植能够治愈50%的患者,而另一半患者的结果令人沮丧,中位总生存期不到12个月。随着非霍奇金淋巴瘤(NHL)治疗的进步,为了提高B-NHL患者的生存率,靶向药物疗法,正在彻底改变B细胞非霍奇金淋巴瘤(B-NHL)的治疗格局。本文就近年来B-NHLs靶向药物的治疗研究作一简要综述。
Non Hodgkin’s lymphoma (NHL) represents a group of heterogeneous lymphoid derived malignant tumors, ranging from inert to highly invasive. According to the source of tumor cells, this disease can be divided into B-cell lymphoma and T/NK cell lymphoma. In B-NHL recurrent/refractory patients, salvage chemotherapy and autologous stem cell transplantation can cure 50% of patients, while the results of the other half of patients are disappointing, with a median overall survival of less than 12 months. With the advancement of non Hodgkin’s lymphoma (NHL) treatment, in order to improve the survival rate of B-NHL patients. Targeted drug therapy is completely changing the treatment pattern of B-cell non Hodgkin’s lymphoma (B-NHL). This article provides a brief review of recent research on targeted drug therapy for B-NHLs.
[1] | Coiffier, B., Lepage, E., Brière, J., Herbrecht, R., Tilly, H., Bouabdallah, R., et al. (2002) CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. New England Journal of Medicine, 346, 235-242. https://doi.org/10.1056/nejmoa011795 |
[2] | Gisselbrecht, C., Glass, B., Mounier, N., Singh Gill, D., Linch, D.C., Trneny, M., et al. (2010) Salvage Regimens with Autologous Transplantation for Relapsed Large B-Cell Lymphoma in the Rituximab Era. Journal of Clinical Oncology, 28, 4184-4190. https://doi.org/10.1200/jco.2010.28.1618 |
[3] | Epperla, N., Badar, T., Szabo, A., Vaughn, J., Borson, S., Saini, N.Y., et al. (2019) Postrelapse Survival in Diffuse Large B-Cell Lymphoma after Therapy Failure Following Autologous Transplantation. Blood Advances, 3, 1661-1669. https://doi.org/10.1182/bloodadvances.2019000102 |
[4] | Bajpai, U.D., Zhang, K., Teutsch, M., Sen, R. and Wortis, H.H. (2000) Bruton’s Tyrosine Kinase Links the B Cell Receptor to Nuclear Factor κb Activation. The Journal of Experimental Medicine, 191, 1735-1744. https://doi.org/10.1084/jem.191.10.1735 |
[5] | Petro, J.B., Rahman, S.M.J., Ballard, D.W. and Khan, W.N. (2000) Bruton’s Tyrosine Kinase Is Required for Activation of Iκb Kinase and Nuclear Factor κb in Response to B Cell Receptor Engagement. The Journal of Experimental Medicine, 191, 1745-1754. https://doi.org/10.1084/jem.191.10.1745 |
[6] | Estupi?án, H.Y., Bergl?f, A., Zain, R. and Smith, C.I.E. (2021) Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Frontiers in Cell and Developmental Biology, 9, Article ID: 630942. https://doi.org/10.3389/fcell.2021.630942 |
[7] | Wang, M.L., Rule, S., Martin, P., et al. (2013) Targeting BTK with Ibrutinib in Relapsed or Refractory Mantle-Cell Lymphoma. The New England Journal of Medicine, 369, 507-516. |
[8] | Younes, A., Sehn, L.H., Johnson, P., Zinzani, P.L., Hong, X., Zhu, J., et al. (2019) Randomized Phase III Trial of Ibrutinib and Rituximab plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma. Journal of Clinical Oncology, 37, 1285-1295. https://doi.org/10.1200/jco.18.02403 |
[9] | Wilson, W.H., Wright, G.W., Huang, D.W., Hodkinson, B., Balasubramanian, S., Fan, Y., et al. (2021) Effect of Ibrutinib with R-CHOP Chemotherapy in Genetic Subtypes of DLBCL. Cancer Cell, 39, 1643-1653.e3. https://doi.org/10.1016/j.ccell.2021.10.006 |
[10] | Herman, S.E.M., Montraveta, A., Niemann, C.U., Mora-Jensen, H., Gulrajani, M., Krantz, F., et al. (2017) The Bruton Tyrosine Kinase (BTK) Inhibitor Acalabrutinib Demonstrates Potent On-Target Effects and Efficacy in Two Mouse Models of Chronic Lymphocytic Leukemia. Clinical Cancer Research, 23, 2831-2841. https://doi.org/10.1158/1078-0432.ccr-16-0463 |
[11] | Tam, C.S., Opat, S., D’Sa, S., Jurczak, W., Lee, H., Cull, G., et al. (2020) A Randomized Phase 3 Trial of Zanubrutinib vs Ibrutinib in Symptomatic Waldenstr?m Macroglobulinemia: The ASPEN Study. Blood, 136, 2038-2050. https://doi.org/10.1182/blood.2020006844 |
[12] | Shirley, M. (2022) Faricimab: First Approval. Drugs, 82, 825-830. https://doi.org/10.1007/s40265-022-01713-3 |
[13] | Liclican, A., Serafini, L., Xing, W., Czerwieniec, G., Steiner, B., Wang, T., et al. (2020) Biochemical Characterization of Tirabrutinib and Other Irreversible Inhibitors of Bruton’s Tyrosine Kinase Reveals Differences in On-and Off-Target Inhibition. Biochimica et Biophysica Acta (BBA)—General Subjects, 1864, Article ID: 129531. https://doi.org/10.1016/j.bbagen.2020.129531 |
[14] | Ariza, Y., Murata, M., Ueda, Y. and Yoshizawa, T. (2019) Bruton’s Tyrosine Kinase (BTK) Inhibitor Tirabrutinib Suppresses Osteoclastic Bone Resorption. Bone Reports, 10, Article ID: 100201. https://doi.org/10.1016/j.bonr.2019.100201 |
[15] | Schuster, S.J., Huw, L., Bolen, C.R., Maximov, V., Polson, A.G., Hatzi, K., et al. (2024) Loss of CD20 Expression as a Mechanism of Resistance to Mosunetuzumab in Relapsed/Refractory B-Cell Lymphomas. Blood, 143, 822-832. https://doi.org/10.1182/blood.2023022348 |
[16] | Klein, C., Jamois, C. and Nielsen, T. (2020) Anti-CD20 Treatment for B-Cell Malignancies: Current Status and Future Directions. Expert Opinion on Biological Therapy, 21, 161-181. https://doi.org/10.1080/14712598.2020.1822318 |
[17] | McLaughlin, P., Grillo-López, A.J., Link, B.K., Levy, R., Czuczman, M.S., Williams, M.E., et al. (2023) Rituximab Chimeric Anti-CD20 Monoclonal Antibody Therapy for Relapsed Indolent Lymphoma: Half of Patients Respond to a Four-Dose Treatment Program. Journal of Clinical Oncology, 41, 154-162. https://doi.org/10.1200/jco.22.02403 |
[18] | Freeman, C.L. and Sehn, L. (2018) Anti-CD20 Directed Therapy of B Cell Lymphomas: Are New Agents Really Better? Current Oncology Reports, 20, Article No. 103. https://doi.org/10.1007/s11912-018-0748-0 |
[19] | Wang, M.L., Lee, H., Chuang, H., Wagner-Bartak, N., Hagemeister, F., Westin, J., et al. (2016) Ibrutinib in Combination with Rituximab in Relapsed or Refractory Mantle Cell Lymphoma: A Single-Centre, Open-Label, Phase 2 Trial. The Lancet Oncology, 17, 48-56. https://doi.org/10.1016/s1470-2045(15)00438-6 |
[20] | Chiron, D., Bellanger, C., Papin, A., Tessoulin, B., Dousset, C., Maiga, S., et al. (2016) Rational Targeted Therapies to Overcome Microenvironment-Dependent Expansion of Mantle Cell Lymphoma. Blood, 128, 2808-2818. https://doi.org/10.1182/blood-2016-06-720490 |
[21] | Le Gouill, S., Morschhauser, F., Chiron, D., Bouabdallah, K., Cartron, G., Casasnovas, O., et al. (2021) Ibrutinib, Obinutuzumab, and Venetoclax in Relapsed and Untreated Patients with Mantle Cell Lymphoma: A Phase 1/2 Trial. Blood, 137, 877-887. https://doi.org/10.1182/blood.2020008727 |
[22] | Stephens, D.M., Huang, Y., Ruppert, A.S., Walker, J.S., Canfield, D., Cempre, C.B., et al. (2022) Selinexor Combined with Ibrutinib Demonstrates Tolerability and Safety in Advanced B-Cell Malignancies: A Phase I Study. Clinical Cancer Research, 28, 3242-3247. https://doi.org/10.1158/1078-0432.ccr-21-3867 |
[23] | Goldberg, A.L. (2003) Protein Degradation and Protection against Misfolded or Damaged Proteins. Nature, 426, 895-899. https://doi.org/10.1038/nature02263 |
[24] | Rajkumar, S.V., Richardson, P.G., Hideshima, T. and Anderson, K.C. (2005) Proteasome Inhibition as a Novel Therapeutic Target in Human Cancer. Journal of Clinical Oncology, 23, 630-639. https://doi.org/10.1200/jco.2005.11.030 |
[25] | Chiarle, R., Budel, L.M., Skolnik, J., Frizzera, G., Chilosi, M., Corato, A., et al. (2000) Increased Proteasome Degradation of Cyclin-Dependent Kinase Inhibitor P27 Is Associated with a Decreased Overall Survival in Mantle Cell Lymphoma. Blood, 95, 619-626. https://doi.org/10.1182/blood.v95.2.619 |
[26] | Pérez-Galán, P., Dreyling, M. and Wiestner, A. (2011) Mantle Cell Lymphoma: Biology, Pathogenesis, and the Molecular Basis of Treatment in the Genomic Era. Blood, 117, 26-38. https://doi.org/10.1182/blood-2010-04-189977 |
[27] | Roue?, G., Pe?rez-Gala?n, P., Lo?pez-Guerra, M., Villamor, N., Campo, E. and Colomer, D. (2007) Selective Inhibition of Iκb Kinase Sensitizes Mantle Cell Lymphoma B Cells to TRAIL by Decreasing Cellular FLIP Level. The Journal of Immunology, 178, 1923-1930. https://doi.org/10.4049/jimmunol.178.3.1923 |
[28] | Till, B.G., Li, H., Bernstein, S.H., Fisher, R.I., Burack, W.R., Rimsza, L.M., et al. (2015) Phaseiitrial of R‐Chopplus Bortezomib Induction Therapy Followed by Bortezomib Maintenance for Newly Diagnosed Mantle Cell Lymphoma: swogs0601. British Journal of Haematology, 172, 208-218. https://doi.org/10.1111/bjh.13818 |
[29] | Chapuy, B., Stewart, C., Dunford, A.J., et al. (2018) Molecular Subtypes of Diffuse Large B Cell Lymphoma Are Associated with Distinct Pathogenic Mechanisms and Outcomes. Nature Medicine, 24, 679-690. |
[30] | Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., et al. (2000) Distinct Types of Diffuse Large B-Cell Lymphoma Identified by Gene Expression Profiling. Nature, 403, 503-511. https://doi.org/10.1038/35000501 |
[31] | Offner, F., Samoilova, O., Osmanov, E., Eom, H., Topp, M.S., Raposo, J., et al. (2015) Frontline Rituximab, Cyclophosphamide, Doxorubicin, and Prednisone with Bortezomib (VR-CAP) or Vincristine (R-CHOP) for Non-GCB DLBCL. Blood, 126, 1893-1901. https://doi.org/10.1182/blood-2015-03-632430 |
[32] | Nowakowski, G.S., Chiappella, A., Gascoyne, R.D., Scott, D.W., Zhang, Q., Jurczak, W., et al. (2021) ROBUST: A Phase III Study of Lenalidomide plus R-CHOP versus Placebo plus R-CHOP in Previously Untreated Patients with ABC-Type Diffuse Large B-Cell Lymphoma. Journal of Clinical Oncology, 39, 1317-1328. https://doi.org/10.1200/jco.20.01366 |
[33] | Davies, A.J., Barrans, S., Stanton, L., Caddy, J., Wilding, S., Saunders, G., et al. (2023) Differential Efficacy from the Addition of Bortezomib to R-CHOP in Diffuse Large B-Cell Lymphoma According to the Molecular Subgroup in the Remodl-B Study with a 5-Year Follow-Up. Journal of Clinical Oncology, 41, 2718-2723. https://doi.org/10.1200/jco.23.00033 |
[34] | Bou Zeid, N. and Yazbeck, V. (2023) PI3K Inhibitors in NHL and CLL: An Unfulfilled Promise. Blood and Lymphatic Cancer: Targets and Therapy, 13, 1-12. https://doi.org/10.2147/blctt.s309171 |
[35] | Clayton, E., Bardi, G., Bell, S.E., Chantry, D., Downes, C.P., Gray, A., et al. (2002) A Crucial Role for the P110δ Subunit of Phosphatidylinositol 3-Kinase in B Cell Development and Activation. The Journal of Experimental Medicine, 196, 753-763. https://doi.org/10.1084/jem.20020805 |
[36] | Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The Emerging Mechanisms of Isoform-Specific PI3K Signalling. Nature Reviews Molecular Cell Biology, 11, 329-341. https://doi.org/10.1038/nrm2882 |
[37] | Fung-Leung, W. (2011) Phosphoinositide 3-Kinase Delta (PI3Kδ) in Leukocyte Signaling and Function. Cellular Signalling, 23, 603-608. https://doi.org/10.1016/j.cellsig.2010.10.002 |
[38] | Hoellenriegel, J., Meadows, S.A., Sivina, M., Wierda, W.G., Kantarjian, H., Keating, M.J., et al. (2011) The Phosphoinositide 3’-Kinase Delta Inhibitor, CAL-101, Inhibits B-Cell Receptor Signaling and Chemokine Networks in Chronic Lymphocytic Leukemia. Blood, 118, 3603-3612. https://doi.org/10.1182/blood-2011-05-352492 |
[39] | Reif, K., Okkenhaug, K., Sasaki, T., Penninger, J.M., Vanhaesebroeck, B. and Cyster, J.G. (2004) Cutting Edge: Differential Roles for Phosphoinositide 3-Kinases, P110γ and P110δ, in Lymphocyte Chemotaxis and Homing. The Journal of Immunology, 173, 2236-2240. https://doi.org/10.4049/jimmunol.173.4.2236 |
[40] | Schmid, M.C., Avraamides, C.J., Dippold, H.C., Franco, I., Foubert, P., Ellies, L.G., et al. (2011) Receptor Tyrosine Kinases and TLR/IL1Rs Unexpectedly Activate Myeloid Cell PI3Kγ, a Single Convergent Point Promoting Tumor Inflammation and Progression. Cancer Cell, 19, 715-727. https://doi.org/10.1016/j.ccr.2011.04.016 |
[41] | Gunderson, A.J., Kaneda, M.M., Tsujikawa, T., Nguyen, A.V., Affara, N.I., Ruffell, B., et al. (2016) Bruton Tyrosine Kinase-Dependent Immune Cell Cross-Talk Drives Pancreas Cancer. Cancer Discovery, 6, 270-285. https://doi.org/10.1158/2159-8290.cd-15-0827 |
[42] | Flinn, I.W., Patel, M., Oki, Y., Horwitz, S., Foss, F.F., Allen, K., et al. (2018) Duvelisib, an Oral Dual PI3K‐δ, Γ Inhibitor, Shows Clinical Activity in Indolent Non‐Hodgkin Lymphoma in a Phase 1 Study. American Journal of Hematology, 93, 1311-1317. https://doi.org/10.1002/ajh.25228 |
[43] | Gopal, A.K., Kahl, B.S., de Vos, S., Wagner-Johnston, N.D., Schuster, S.J., Jurczak, W.J., et al. (2014) PI3Kδ Inhibition by Idelalisib in Patients with Relapsed Indolent Lymphoma. New England Journal of Medicine, 370, 1008-1018. https://doi.org/10.1056/nejmoa1314583 |
[44] | Dreyling, M., Santoro, A., Mollica, L., Lepp?, S., Follows, G.A., Lenz, G., et al. (2017) Phosphatidylinositol 3-Kinase Inhibition by Copanlisib in Relapsed or Refractory Indolent Lymphoma. Journal of Clinical Oncology, 35, 3898-3905. https://doi.org/10.1200/jco.2017.75.4648 |
[45] | Youle, R.J. and Strasser, A. (2008) The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nature Reviews Molecular Cell Biology, 9, 47-59. https://doi.org/10.1038/nrm2308 |
[46] | Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013 |
[47] | Czabotar, P.E., Lessene, G., Strasser, A. and Adams, J.M. (2013) Control of Apoptosis by the BCL-2 Protein Family: Implications for Physiology and Therapy. Nature Reviews Molecular Cell Biology, 15, 49-63. https://doi.org/10.1038/nrm3722 |
[48] | Visco, C., Finotto, S., Zambello, R., Paolini, R., Menin, A., Zanotti, R., et al. (2013) Combination of Rituximab, Bendamustine, and Cytarabine for Patients with Mantle-Cell Non-Hodgkin Lymphoma Ineligible for Intensive Regimens or Autologous Transplantation. Journal of Clinical Oncology, 31, 1442-1449. https://doi.org/10.1200/jco.2012.45.9842 |
[49] | Davids, M.S., Roberts, A.W., Seymour, J.F., Pagel, J.M., Kahl, B.S., Wierda, W.G., et al. (2017) Phase I First-in-Human Study of Venetoclax in Patients with Relapsed or Refractory Non-Hodgkin Lymphoma. Journal of Clinical Oncology, 35, 826-833. https://doi.org/10.1200/jco.2016.70.4320 |
[50] | Eyre, T.A., Walter, H.S., Iyengar, S., Follows, G., Cross, M., Fox, C.P., et al. (2018) Efficacy of Venetoclax Monotherapy in Patients with Relapsed, Refractory Mantle Cell Lymphoma after Bruton Tyrosine Kinase Inhibitor Therapy. Haematologica, 104, e68-e71. https://doi.org/10.3324/haematol.2018.198812 |
[51] | Zhao, S., Kanagal‐Shamanna, R., Navsaria, L., Ok, C.Y., Zhang, S., Nomie, K., et al. (2020) Efficacy of Venetoclax in High Risk Relapsed Mantle Cell Lymphoma (MCL)—Outcomes and Mutation Profile from Venetoclax Resistant MCL Patients. American Journal of Hematology, 95, 623-629. https://doi.org/10.1002/ajh.25796 |
[52] | Tarockoff, M., Gonzalez, T., Ivanov, S. and Sandoval-Sus, J. (2022) Mantle Cell Lymphoma: The Role of Risk-Adapted Therapy and Treatment of Relapsed Disease. Current Oncology Reports, 24, 1313-1326. https://doi.org/10.1007/s11912-022-01297-x |