|
具有双边状态反馈脉冲控制的食饵–捕食者模型的动力分析
|
Abstract:
为进行害虫的防治,本文在具有Smith增长且具有Beddington-DeAngelis型功能反应的食饵–捕食者系统的基础上加入双边状态反馈脉冲控制,从而得到新的模型,并证明了其双边阶一周期解的存在性。同时,也对所得的理论结果通过数值模拟进行验证。
In order to control insect pests, a model with two state-feedback impulse controls is applied to the predator-predator system with Smith growth function and Beddington-DeAngelis type functional response. We also prove the existence of order-1 periodic solution. At the same time, the theoretical results are verified by numerical simulation.
[1] | Gakkhar, S. and Singh, A. (2012) Complex Dynamics in a Prey Predator System with Multiple Delays. Communications in Nonlinear Science and Numerical Simulation, 17, 914-929. https://doi.org/10.1016/j.cnsns.2011.05.047 |
[2] | Pimentel, D. (2007) Area-Wide Pest Management: Environmental, Economic and Food Issues. Area-Wide Control of Insect Pests: From Research to Field Implementation. Springer Netherlands, 35-47. |
[3] | Yu, R., Xu, X., Liang, Y., Tian, H., Pan, Z., Jin, S., et al. (2014) The Insect Ecdysone Receptor Is a Good Potential Target for RNAi-Based Pest Control. International Journal of Biological Sciences, 10, 1171-1180. https://doi.org/10.7150/ijbs.9598 |
[4] | Liu, H. (2004) Improved Singular Value Decomposition Technique for Detecting and Extracting Periodic Impulse Component in a Vibration Signal. Chinese Journal of Mechanical Engineering (English Edition), 17, 340. https://doi.org/10.3901/cjme.2004.03.340 |
[5] | Li, Y. and Yang, B. (2002) The Chaotic Detection of Periodic Short-Impulse Signals under Strong Noise Background. Journal of Electronics (China), 19, 431-433. https://doi.org/10.1007/s11767-002-0078-z |
[6] | 刘衍胜, 綦建刚, 傅希林.具有固定时刻脉冲的微分系统的吸引性[J]. 中国学术期刊文摘, 2000, 6(11): 1378-1379. |
[7] | 杨慧子. 固定时刻脉冲随机微分方程的收敛性和稳定性[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014: 5-16. |
[8] | Wei, C. and Chen, L.A. (2012) Leslie-Gower Pest Management Model with Impulsive State Feedback Control. Journal of Biomathematics, 27, 1-10. |
[9] | Ji, X., Yuan, S. and Chen, L. (2015) A Pest Control Model with State-Dependent Impulses. International Journal of Biomathematics, 8, 1550009. https://doi.org/10.1142/s1793524515500096 |
[10] | 刘娟. 具有状态脉冲效应的害虫防治模型[J]. 山西农业大学学报(自然科学版), 2017, 37(3): 173-176+188. |
[11] | 程惠东, 尹佐元, 刘洪霞. 具有状态脉冲效应的阶段结构的害虫防治模型动力性分析[J]. 应用数学, 2012, 25(4): 816-823. |
[12] | Yan, S., Wei, J. and Lian, Y.G. (2014) Pest Management Model with Impulsive State Feedback Control. Journal of Beihua University (Natural Science), 15, 281-286. |
[13] | 陈兰荪, 程惠东. 害虫综合防治建模驱动“半连续动力系统理论”兴起[J]. 数学建模及其应用, 2021, 10(1): 1-16. |