全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有双边状态反馈脉冲控制的食饵–捕食者模型的动力分析
Dynamic Analysis of Prey-Predator Model with Two State-Feedback Impulse Controls

DOI: 10.12677/aam.2024.136255, PP. 2666-2674

Keywords: 食饵,捕食者,双边状态反馈脉冲控制,阶一周期解
Prey
, Predator, Two State-Feedback Impulse Controls, Order-1 Periodic Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进行害虫的防治,本文在具有Smith增长且具有Beddington-DeAngelis型功能反应的食饵–捕食者系统的基础上加入双边状态反馈脉冲控制,从而得到新的模型,并证明了其双边阶一周期解的存在性。同时,也对所得的理论结果通过数值模拟进行验证。
In order to control insect pests, a model with two state-feedback impulse controls is applied to the predator-predator system with Smith growth function and Beddington-DeAngelis type functional response. We also prove the existence of order-1 periodic solution. At the same time, the theoretical results are verified by numerical simulation.

References

[1]  Gakkhar, S. and Singh, A. (2012) Complex Dynamics in a Prey Predator System with Multiple Delays. Communications in Nonlinear Science and Numerical Simulation, 17, 914-929.
https://doi.org/10.1016/j.cnsns.2011.05.047
[2]  Pimentel, D. (2007) Area-Wide Pest Management: Environmental, Economic and Food Issues. Area-Wide Control of Insect Pests: From Research to Field Implementation. Springer Netherlands, 35-47.
[3]  Yu, R., Xu, X., Liang, Y., Tian, H., Pan, Z., Jin, S., et al. (2014) The Insect Ecdysone Receptor Is a Good Potential Target for RNAi-Based Pest Control. International Journal of Biological Sciences, 10, 1171-1180.
https://doi.org/10.7150/ijbs.9598
[4]  Liu, H. (2004) Improved Singular Value Decomposition Technique for Detecting and Extracting Periodic Impulse Component in a Vibration Signal. Chinese Journal of Mechanical Engineering (English Edition), 17, 340.
https://doi.org/10.3901/cjme.2004.03.340
[5]  Li, Y. and Yang, B. (2002) The Chaotic Detection of Periodic Short-Impulse Signals under Strong Noise Background. Journal of Electronics (China), 19, 431-433.
https://doi.org/10.1007/s11767-002-0078-z
[6]  刘衍胜, 綦建刚, 傅希林.具有固定时刻脉冲的微分系统的吸引性[J]. 中国学术期刊文摘, 2000, 6(11): 1378-1379.
[7]  杨慧子. 固定时刻脉冲随机微分方程的收敛性和稳定性[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014: 5-16.
[8]  Wei, C. and Chen, L.A. (2012) Leslie-Gower Pest Management Model with Impulsive State Feedback Control. Journal of Biomathematics, 27, 1-10.
[9]  Ji, X., Yuan, S. and Chen, L. (2015) A Pest Control Model with State-Dependent Impulses. International Journal of Biomathematics, 8, 1550009.
https://doi.org/10.1142/s1793524515500096
[10]  刘娟. 具有状态脉冲效应的害虫防治模型[J]. 山西农业大学学报(自然科学版), 2017, 37(3): 173-176+188.
[11]  程惠东, 尹佐元, 刘洪霞. 具有状态脉冲效应的阶段结构的害虫防治模型动力性分析[J]. 应用数学, 2012, 25(4): 816-823.
[12]  Yan, S., Wei, J. and Lian, Y.G. (2014) Pest Management Model with Impulsive State Feedback Control. Journal of Beihua University (Natural Science), 15, 281-286.
[13]  陈兰荪, 程惠东. 害虫综合防治建模驱动“半连续动力系统理论”兴起[J]. 数学建模及其应用, 2021, 10(1): 1-16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133