|
湖北利川耕地土壤重金属分布及风险评价
|
Abstract:
采集、检测、统计分析了湖北省利川市338个耕地土样的镉、砷、铬、铅、汞等重金属含量,并运用单因子指数、地累积指数和潜在生态危害单项指数对单个重金属污染程度进行了评价,还运用内梅罗指数、潜在生态危害指数进行了重金属污染程度的综合评价。结果表明,利川耕地镉存在轻微污染,且污染指数最高、程度最重,均值超过GB15618-2018标准制定的最严风险筛选值,56.80%的样点处于黄区,1个样点为红区;其次为砷,有17.16%的样点处于黄区;铬、铅、汞基本处于绿区,未造成污染;综合评价内梅罗指数为轻微污染、潜在生态危害指数为低污染水平。5种重金属间相关性极显著,可能来源具有相似性;镉与土壤有机质、pH极显著相关;铅与土壤有机质显著相关、与pH极显著相关;砷与土壤pH极显著相关。这为利川优质高山水稻、高山蔬菜、地道药材、“利川红”茶叶等特色产业的区域规划和健康发展提供了重要依据。
The content of cadmium, arsenic, chromium, lead, mercury and other heavy metals in 338 cultivated soil samples from Lichuan City, Hubei Province was collected, detected, and statistically analyzed. The single factor index, land accumulation index, and potential ecological hazard single index were used to evaluate the degree of individual heavy metal pollution. The Nemero index and potential ecological hazard index were also used to comprehensively evaluate the degree of heavy metal pollution. The results showed that there was slight cadmium pollution in the farmland of Lichuan, with the highest pollution index and the heaviest degree, with an average exceeding the strictest risk screening value set by the GB15618-2018 standard. 56.80% of the sampling points were in the yellow area, and one sampling point was in the red area; Next is arsenic, with 17.16% of the samples located in the yellow zone; Chromium, lead, and mercury are mostly in the green zone and have not caused pollution; The comprehensive evaluation shows that the Nemero index is slightly polluted and the potential ecological hazard index is at a low pollution level. The correlation between the 5 heavy metals is extremely significant, and their sources may be similar; Cadmium is significantly correlated with soil organic matter and pH; Lead is significantly correlated with soil organic matter and extremely significantly correlated with pH; Arsenic is significantly correlated with soil pH. This provides an important basis for the regional planning and healthy development of characteristic industries such as high-quality high-altitude rice, high-altitude vegetables, authentic medicinal herbs, and “Lichuan Red” tea in Lichuan.
[1] | 何翊, 吴海. 生物修复技术在重金属污染治理中的应用[J]. 化学通报, 2005(1): 36-42. |
[2] | 郑喜珅, 鲁安怀, 高翔, 等. 土壤中重金属污染现状与防治方法[J]. 土壤与环境, 2002, 11(1): 79-84. |
[3] | 窦红宾, 郭唯. 重金属污染及其对水土的危害[J]. 生态经济, 2022, 38(11): 5-8. |
[4] | 李春辉, 田紫君, 向绍鹏, 等. 恩施州耕地生产障碍情况及安全利用[J]. 中南农业科技, 2024, 45(1): 80-85. |
[5] | 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准(试行): GB15618-2018[S]. 北京: 中国标准出版社, 2018. |
[6] | 张健, 谭均, 赵晓, 等. 黄连中重金属污染分析及其健康风险评估[J]. 甘肃农业大学学报, 2024, 59(1): 1-11. |
[7] | 万凯, 袁飞, 李光顺, 等. 恩施州矿山周边耕地土壤重金属污染特征及评价[J]. 资源环境与工程, 2020, 34(S1): 28-32. |
[8] | 张敬雅, 李湘凌, 章凌曦, 等. 安徽庐江县砖桥潜在富硒土壤重金属元素空间变异与来源[J]. 环境科学研究, 2019, 32(9): 1594-1603. |
[9] | 费利东, 张婷, 王艳芬, 等. 土壤重金属污染多种评价方法对比研究——以南京市龙潭沿江地区为例[J]. 有色金属(矿山部分), 2023, 75(4): 142-149+160. |
[10] | Muller, G. (1969) Index of Geoaccumulation in Sediment of the Rhine River. Geojournal, 2, 108-118. |
[11] | Nemerow, N.L. (1974) Scientific Stream Pollution Analysis. McGraw Hill, New York, 210-231. |
[12] | Hakanson, L. (1980) An Ecological Risk Index for Aquatic Pollution Control a Sedimentological Approach. Nonferrous Metals (Mining Section), 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8 |
[13] | 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008(2): 112-115. |
[14] | 王惠艳, 彭敏, 马宏宏, 等. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117. |
[15] | 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. |
[16] | 宋大伦, 刘祥林, 冉露, 等. 湖北利川耕地土壤交换性钙镁含量及空间分布[J]. 农业科学, 2024, 14(3): 337-350. |
[17] | 师荣光, 赵玉杰, 刘凤枝, 等. 土壤重金属污染评价技术研究[C]//农业部环境监测总站. 全国耕地土壤污染监测与评价技术研讨会论文集. 北京: 中国环境科学出版社, 2006: 4. |
[18] | 孟昭虹, 高玉娟. 黑龙江生态省土壤重金属分布特征及其生态风险评价[J]. 安徽农业科学, 2008, 36(31): 13819-13821+13830. |
[19] | 宁建凤, 邹献中, 杨少海, 等. 广东大中型水库底泥重金属含量特征及潜在生态风险评价[J]. 生态学报, 2009, 29(11): 6059-6067. |
[20] | 姚志刚, 鲍征宇, 高璞. 洞庭湖沉积物重金属环境地球化学[J]. 地球化学, 2006(6): 629-638. |
[21] | 郭笑笑, 刘丛强, 朱兆洲, 等. 土壤重金属污染评价方法[J]. 生态学杂志, 2011, 30(5): 889-896. |