全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Petrology and Structural Characterization of Post-Neoproterozoic Dolerites from the Kimberlite Fields in the Kéniéba Region (Western Mali)

DOI: 10.4236/ojg.2024.146028, PP. 655-670

Keywords: Dolerites, Kimberlitic Fields, Petrology, Structures, Kéniéba, Mali

Full-Text   Cite this paper   Add to My Lib

Abstract:

Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes.

References

[1]  Dalrymphe, G.B., Gromme, C.S. and White, R.W. (1975) Potassium-Argon Age and Paleomagnetism of Diabase Dikes in Liberia: Initiation of Central Atlantic Rifting. GSA Bulletin, 86, 399-411.
https://doi.org/10.1130/0016-7606(1975)86<399:PAAPOD>2.0.CO;2
[2]  Bardet, M.G. (1974) Géologie du Diamant, Deuxième Partie: Gisements de Diamant d’Afrique. Mémoires du B.R.G.M., 229 p.
[3]  Feybesse, J.-L., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J.L., Milési, J.P. and Bouchot, V. (2006) The Palaeoproterozoic Ghanaian Province. Geodynamic Model and Ore Controls, Including Regional Stress Modelling. Precambrian Research, 149, 149-196.
https://doi.org/10.1016/j.precamres.2006.06.003
[4]  Bassot, J.P. (1966) Etude géologique du Sénégal oriental et de ses confins Guinéo-Maliens. Mém. B.R.G.M., No. 40, 332 p.
[5]  Klöckner Industrie (1989) Etude géologique des fenêtres protérozoïques inférieures du secteur du projet (Kayes, Kenieba). Rapp. Techn., DNGM, Bamako, n° 1372.
[6]  Bessoles, B. (1977) Géologie de l’Afrique: Le Craton Ouest Africain. Mém. BRGM, No. 88, 403 p.
[7]  Milési, J.P., Feybesse, J.L., Ledru, P., Dommanget, A., Ouédraogo, M.F., Marcoux, E., Prost, A.E., Vinchon, C., Sylvain, J.P., Johan, V., Tegyey, M., Calvez, J.Y. and Lagny, Ph. (1989) Les minéralisations aurifères de l’Afrique de l’Ouest. Leur évolution lithostructurale au Protérozoïque inférieur. Chronique de la Recherche Minière, 497, 3-98.
[8]  Coulibaly, I. (2018) Pétrologie des volcanites et des plutonites du sud du sillon birimien de Toumodi-Fetekro (Côte d’Ivoire): Implications petrogénétique et tectonique. Thèse de Doctorat, Université Félix Houphouët-Boigny, Cocody-Abidjan, 218 p.
[9]  Irvine, T.N. and Baragar W.R.A. (1971) A Guide to the Chemical Classification of the Common Volcanic Rocks. The Canadian Journal of Earth Sciences, 8, 523-548.
https://doi.org/10.1139/e71-055
[10]  Tomshin, M.D. Kopylova, A.G. and Gogoleva, S.S. (2019) Middle Paleozoic Basites of the Nakyn Kimberlite Field. IOP Conference Series: Earth and Environmental Science, 362, Article ID: 012066.
https://doi.org/10.1088/1755-1315/362/1/012066
[11]  Tomshin, M.D. and Gogoleva, S. (2020) Behavior of TiO2 in Dolerits as a Possible Search Sign for Kimberlites. IOP Conference Series: Earth and Environmental Science, 609, Article ID: 012073.
https://doi.org/10.1088/1755-1315/609/1/012073
[12]  Miyashiro, A. (1974) Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274, 321-355.
https://doi.org/10.2475/ajs.274.4.321
[13]  Winchester, J.A. and Floyd, P.A. (1977) Geochemical Discrimination of Different Magma Series and Their Differentiation Product Using Immobile Elements. Chemical Geology, 20, 325-343.
https://doi.org/10.1016/0009-2541(77)90057-2
[14]  Pearce, J. (1996) A User’s Guide to Basalt Discrimination Diagrams. In: Wyman, D.A., Ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration, Geological Association of Canada, St. John’s, Short Course Notes, Vol. 12, 79-113.
[15]  McDonough, W.F. and Sun, S.S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[16]  Anders, E. and Grevesse, N. (1989) Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53, 197-214.
https://doi.org/10.1016/0016-7037(89)90286-X
[17]  Cabanis, B. and Lecolle, M. (1989) Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustales. Comptes Rendus de lAcadémie de Sciences de Paris, Série II, 309, 2023-2029.
[18]  Saccani, E. (2015) A New Method of Discriminating Different Types of Post-Archean Ophiolitic Basalts and Their Tectonic Significance Using Th-Nb and Ce-Dy-Yb Systematics. Geoscience Frontiers, 6, 481-501.
https://doi.org/10.1016/j.gsf.2014.03.006
[19]  Pearce, J.A. and Norry, M.J. (1979) Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Intrusive Rocks. Contributions to Mineralogy and Petrology, 69, 33-47.
https://doi.org/10.1007/BF00375192
[20]  Dray, S. and Dufour, A.B. (2007) The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22, 1-20.
https://doi.org/10.18637/jss.v022.i04
[21]  Dufour, A.B. (2009) Fiche TD avec le logiciel R: Course 2. Principal Component Analysis (PCA). 17 p.
http://pbil.univ-lyon1.fr/R/pdf/course2.pdf
[22]  Wenmenga, U., Kecir, M. and Affaton, P. (2009) Distribution des filons de dolérite d’après les interprétations géologiques de données aéromagnétiques et leur signification géodynamique. Bulletin du Service Géologique National de lAlgérie, 20, 245-261.
[23]  Jessell, M.W., Begg, G.C. and Miller, M.S. (2016) The Geophysical Signatures of the West African Craton. Precambrian Research, 274, 3-24.
https://doi.org/10.1016/j.precamres.2015.08.010
[24]  Traoré, B., Ouattara, G., Allialy, M.E., Wane, O., Ndam-Njikam, M.M., Koné, A.Y. and Sangaré, S. (2023) Aeromagnetic Imagery as a Tool to Help Identify the Structures Controlling the Emplacement of the Kenieba Kimberlite Pipes (Western Mali, West African Craton). Open Journal of Geology, 13, 1177-1194.
https://doi.org/10.4236/ojg.2023.1311050
[25]  Wenmenga, U. and Affaton, P. (2008) Igneous Structures, Deformation and Contact Metamorphism Associated with the Emplacement of Boussouma Dolerite Dyke (Burkina Faso, West-African Craton). Bulletin du Service Géologique de lAlgérie, 19, 3-16.
[26]  Diallo, M., Baratoux, L., Dufréchou, G., Jessell, M.W., Vanderhaeghe, O., Lyb, S. and Baratoux, D. (2020) Structure of the Paleoproterozoic Kédougou-Kenieba Inlier (Senegal-Mali) Deduced from Gravity and Aeromagnetic Data. Journal of African Earth Sciences, 162, Article ID: 103732.
https://doi.org/10.1016/j.jafrearsci.2019.103732
[27]  Tapsoba, B., Lo, C.-H., Wenmenga, U., Iizuka, Y., Chung, S.-L. and Shellnutt, G. (2018) Chemical and Sr-Nd Compositions and 40Ar/39Ar Ages of NW-Trending Dolerite Dikes of Burkina Faso: Evidence for a Mesoproterozoic Magmatism in the West African Craton. Geoscience Frontiers, 9, 1957-1980.
https://doi.org/10.1016/j.gsf.2017.12.015
[28]  Papon, A. (1973) Géologie et minéralisations du Sud-Ouest de la Côte-d’Ivoire. Mém. BRGM, No. 80, 284 p.
[29]  Morel, S.W. (1979) The Geology and Mineral Resources of Sierra Leone. Economic Geology, 74, 1563-1576.
https://doi.org/10.2113/gsecongeo.74.7.1563
[30]  Deckart, K., Féraud, G. and Bertrand, H. (1997) Age of Jurassic Continental Tholeiites of French Guyana, Surinam and Guinea: Implications for the Initial Opening of the Central Atlantic Ocean. Earth and Planetary Science Letters, 150, 205-220.
https://doi.org/10.1016/S0012-821X(97)00102-7
[31]  Jessell, M., Santoul, J., Baratoux, L., Youbi, N., Ernst, R.E., Metelka, V., Miller, J. and Perrouty, S. (2015) An Updated Map of West African Mafic Dykes. Journal of African Earth Sciences, 112, 440-450.
https://doi.org/10.1016/j.jafrearsci.2015.01.007
[32]  Baratoux, L., Söderlund, U., Ernst, R.E., de Roever, E., Jessell, M., Kamo, W.S., Naba, S., Perrouty, S., Metelka, V., Yatte, D., Grenholm, M., Diallo, D.P., Ndiaye, P.M., Dioh, E., Cournède, C., Benoit, M., Baratoux, D., Youbi, N., Rousse, S. and Bendaoud, A. (2019) New U-Pb Baddeleyite Ages of Mafic Dyke Swarms of the West African and Amazonian Cratons: Implication for Their Configuration in Supercontinents through Time. In: Srivastava, R.K., Ernst, R.E. and Peng, P., Eds., Dyke Swarms of the World: A Modern Perspective, Springer, Singapore, 263-314.
https://doi.org/10.1007/978-981-13-1666-1_7
[33]  Bardet, M. G. and Vachette, M. (1966) Détermination d’âges de kimberlites de l’ouest africain et essai d’interprétation des datations des diverses venues diamantifères dans le monde. BRGM Rapport inédit, DS 66 A 59, 15 p.
[34]  Pouclet, A., Allialy, M., Daouda-Yao, B. and Esso, B. (2004) Découverte d’un diatrème de kimberlite diamantifère à Séguéla en Côte-d’Ivoire. C. R. Geoscience, 336, 9-17.
https://doi.org/10.1016/j.crte.2003.10.012
[35]  Chirico, P.G., Barthélémy, F. and Koné, F. (2010) Les ressources potentielles en diamants alluviaux et l’évaluation de la capacité de production du Mali. U.S. Geological Survey, B.R.G.M. (France), DNGM (Mali), Scientific Investigations Report 2010-5044, 26 p.
https://pubs.usgs.gov/sir/2010/5044/french/pdf/sir2010-5044_french.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133