Phytoliths are extensively utilized as an archaeobotanical indicator in paleovegetation reconstruction and environmental archaeology. Over the past two decades, numerous phytolith morphotypes, particularly those exhibiting diagnostic morphological features and over representative of source plants at the genus and species levels, were discovered and reported. These advancements have significantly contributed to phytolith-based vegetation reconstruction on different timescales, enhanced our understanding of prehistoric plant utilization, and elucidated cultivation and domestication processes of key crops in ancient agriculture. However, there are still inconsistencies and misunderstandings regarding the morphological characteristics of diagnostic phytoliths in various plant groups. This review highlighted the standardization in the classification and description of phytolith morphotypes, and summarized the advancements in phytolith morphology research over the past two decades. Morphological illustrations of diagnostic phytoliths from various plant groups, particularly key crops and their relatives from dryland and rice agriculture in East Asia, were presented as references for phytolith identification and application. Finally, this review proposes future directions for phytolith morphological studies, emphasizing the comprehensive consideration of anatomical structure and morphometric parameters, as well as the need for extensive research on modern plant phytoliths and control experiments on phytolith growth.
References
[1]
Piperno, D.R. (2006) Phytolith: A Comprehensive Guide for Archaeologists and Paleoecologists. Alta Mira Press.
[2]
Wang, Y.J. and Lü, H.Y. (1993) The Study of Phytolith and Its Application. China Ocean Press.
[3]
Lu, H.Y., Zhang, J.P., Wu, N.Q., Liu, K.B., Xu, D.K. and Li, Q. (2009) Phytoliths Analysis for the Discrimination of Foxtail Millet (Setaria italica) and Common Millet (Panicum miliaceum). PLoS ONE, 4, e4448. https://doi.org/10.1371/journal.pone.0004448
[4]
Lu, H.Y. (2017) New Methods and Progress in Research on the Origins and Evolution of Prehistoric Agriculture in China. Science China Earth Sciences, 60, 2141-2159. https://doi.org/10.1007/s11430-017-9145-2
[5]
Zhang, J.P., Lü, H.Y., Ge, Y. and Shao, K.L. (2019) Review and Prospect of Phytolith Morphology on Millets Identification. Quaternary Sciences, 39, 1-11. (In Chinese)
[6]
Alexandre, A., Meunier, J.D., Lézine, A.M., Vincens, A. and Schwartz, D. (1997) Phytoliths: Indicators of Grassland Dynamics during the Late Holocene in Intertropical Africa. Palaeogeography Palaeoclimatology Palaeoecology, 136, 213-229. https://doi.org/10.1016/S0031-0182(97)00089-8
[7]
Albert, R.M., Bamford, M.K. and Esteban, I. (2015) Reconstruction of Ancient Palm Vegetation Landscapes Using a Phytolith Approach. Quaternary International, 369, 51-66. https://doi.org/10.1016/j.quaint.2014.06.067
[8]
Gao, G.Z., Li, D.H., Jie, D.M., Li, N.N., Liu, L.D., Liu, H.Y., et al. (2021) Application of Soil Phytoliths to the Quantitative Characterization of Temperate Grassland Ecosystems: A Case Study in Northeast China. Plant and Soil, 459, 329-342. https://doi.org/10.1007/s11104-020-04762-3
[9]
Zuo, X.X., Lu, H.Y., Li, Z. and Song, B. (2021) Phytolith Reconstruction of Early to Mid-Holocene Vegetation and Climatic Changes in the Lower Yangtze Valley. CATENA, 207, Article ID: 105586. https://doi.org/10.1016/j.catena.2021.105586
[10]
Yang, X.Y., Barton, H.J., Wan, Z.W., Li, Q., Ma, Z.K., Li, M.Q., et al. (2013) Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China. PLOS ONE, 8, e63148. https://doi.org/10.1371/journal.pone.0063148
[11]
Perry, L., Sandweiss, D.H., Piperno, D.R., Rademaker, K., Malpass, M.A., Umire, A. and de la Vera, P. (2006) Early Maize Agriculture and Interzonal Interaction in Southern Peru. Nature, 440, 76-79. https://doi.org/10.1038/nature04294
[12]
Lu, H., Zhang, J., Liu, K., Wu, N., Li, Y., Zhou, K., et al. (2009) Earliest Domestication of Common Millet (Panicummiliaceum ) in East Asia Extended to 10,000 Years Ago. Proceedings of the National Academy of Sciences of the United States of America, 106, 7367-7372. https://doi.org/10.1073/pnas.0900158106
[13]
Piperno, D.R., Ranere, A.J., Holst, I., Iriarte, J. and Dickau, R. (2009) Starch Grain and Phytolith Evidence for Early Ninth Millennium B.P. Maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 106, 5019-5024. https://doi.org/10.1073/pnas.0812525106
[14]
Zhang, J., Lu, H., Gu, W., Wu, N., Zhou, K., Hu, Y., et al. (2012) Early Mixed Farming of Millet and Rice 7800 Years Ago in the Middle Yellow River Region, China. PLOS ONE, 7, e52146. https://doi.org/10.1371/journal.pone.0052146
[15]
Jin, G., Wu, W., Zhang, K., Wang, Z. and Wu, X. (2014) 8000-year Old Rice Remains from the North Edge of the Shandong Highlands, East China. Journal of Archaeological Science, 51, 34-42. https://doi.org/10.1016/j.jas.2013.01.007
[16]
Wang, C., Lü H.Y., Zhang, J.P., Ye, M.L. and Cai, L.H. (2015) Phytolith Evidence of Millet Agriculture in the Late Neolithic Archaeological Site of Lajia, Northwestern China. Quaternary Sciences, 35, 209-217. (In Chinese)
[17]
Ball, T., Chandler-Ezell, K., Dickau, R., Duncan, N., Hart, T.C., Iriarte, J., et al. (2016) Phytoliths as a Tool for Investigations of Agricultural Origins and Dispersals around the World. Journal of Archaeological Science, 68, 32-45. https://doi.org/10.1016/j.jas.2015.08.010
[18]
Wu, Y., Ge, Y., Hu, H., Stidham, T.A., Li, Z.H., Bailleul, A.M. and Zhou, Z.H. (2023) Intra-Gastric Phytoliths Provide Evidence for Folivory in Basal Avialans of the Early Cretaceous Jehol Biota. Nature Communications, 14, Article No. 4558. https://doi.org/10.1038/s41467-023-40311-z
[19]
Piperno, D.R. (2016) Phytolith Radiocarbon Dating in Archaeological and Paleoecological Research: A Case Study of Phytoliths from Modern Neotropical Plants and a Review of the Previous Dating Evidence. Journal of Archaeological Science, 68, 54-61. https://doi.org/10.1016/j.jas.2015.06.002
[20]
Zuo, X.X., Lu, H.Y., Jiang, L.P., Zhang, J.P., Yang, X.Y., Huan, X.J., et al. (2017) Dating Rice Remains through Phytolith Carbon-14 Study Reveals Domestication at the Beginning of the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 114, 6486-6491. https://doi.org/10.1073/pnas.1704304114
[21]
Zuo, X.X. and Lu, H.Y. (2011) Carbon Sequestration within Millet Phytoliths from Dry-Farming of Crops in China. Chinese Science Bulletin, 56, 3451-3456. https://doi.org/10.1007/s11434-011-4674-x
[22]
Song, Z.L., Wu, Y.T., Yang, Y.H., Zhang, X.D., Van Zwieten, L., Bolan, N., et al. (2022) High Potential of Stable Carbon Sequestration in Phytoliths of China’s Grass-Lands. Global Change Biology, 28, 2736-2750. https://doi.org/10.1111/gcb.16092
[23]
Wen, C., Lu, H., Zuo, X. and Ge, Y. (2018) Advance of Research on Modern Soil Phytolith. Science China Earth Sciences, 61, 1169-1182. https://doi.org/10.1007/s11430-017-9220-8
[24]
Madella, M., Alexandre, A. and Ball, T. (2005) International Code for Phytolith Nomenclature 1.0. Annals of Botany, 96, 253-260.
[25]
Li, Q., Xu, D.K. and Lü, H.Y. (2005) Morphology of Phytolith in Bambusoideae (Gramineae) and Its Ecological Significance. Quaternary Sciences, 25, 777-784. (In Chinese)
[26]
Qin, L., Li, J., Wang, L. and Lü, H.Y. (2008) The Morphology and Assemblages of Phytolith in Pooideae from the Qinghai-Tibetan Plateau. Acta Palaeontologica Sinica, 47, 176-184. (In Chinese)
[27]
Lin, Y.J., Zuo, X.X., Pei, Y.Y., Ren, L. and Xie, H. (2023) Morphological Comparison of Short Saddle Phytoliths of Eragrostoideae and Phragmites australis. Pratacultural Science, 40, 427-435. (In Chinese)
[28]
Xu, D.K., Li, Q. and Lü, H.Y. (2005) Morphological Analysis of Phytoliths in Palmae and Its Environmental Significance. Quaternary Sciences, 25, 785-792. (In Chinese)
[29]
Pearsall, D.M., Piperno, D.R., Dinan, E.H., Umlauf, M., Zhao, Z. and Benfer, R.A. (1995) Distinguishing Rice (Oryza sativa Poaceae) from Wild Oryza Species through Phytolith Analysis: Results of Preliminary Research. Economic Botany, 49, 183-196. https://doi.org/10.1007/bf02862923
[30]
Zhang, J., Lu, H., Wu, N., Yang, X. and Diao, X. (2011) Phytolith Analysis for Differentiating between Foxtail Millet (Setaria italica) and Green Foxtail (Setaria viridis). PLOS ONE, 6, e19726. https://doi.org/10.1371/journal.pone.0019726
[31]
Gu, Y., Zhao, Z. and Pearsall, D.M. (2013) Phytolith Morphology Research on Wild and Domesticated Rice Species in East Asia. Quaternary International, 287, 141-148. https://doi.org/10.1016/j.quaint.2012.02.013
[32]
Weisskopf, A.R. and Lee, G.A. (2016) Phytolith Identification Criteria for Foxtail and Broomcorn Millets: A New Approach to Calculating Crop Ratios. Archaeological and Anthropological Sciences, 8, 29-42. https://doi.org/10.1007/s12520-014-0190-7
[33]
Ge, Y., Lu, H., Zhang, J., Wang, C., He, K. and Huan, X. (2016) Phytolith Analysis for the Identification of Barnyard Millet (Echinochloa sp.) and Its Implications. Archaeological and Anthropological Sciences, 10, 61-73. https://doi.org/10.1007/s12520-016-0341-0
[34]
Zhang, J., Lu, H., Liu, M., Diao, X., Shao, K. and Wu, N. (2018) Phytolith Analysis for Differentiating between Broomcorn Millet (Panicum miliaceum) and Its Weed/ Feral Type (Panicum ruderale). Scientific Reports, 8, Article No. 13022. https://doi.org/10.1038/s41598-018-31467-6
[35]
Wang, C., Zhang, J.P. and Lü, H.Y. (2022) Study on Phytolith Morphology of Bast Fiber Crops. Quaternary Sciences, 42, 1775-1791. (In Chinese)
[36]
Li, Q., Lü, H.Y. and Wang, W.M. (2009) Introduction and Discussion on International Code for Phytolith Nomenclature 1.0. Acta Palaeontologica Sinica, 48, 131-138. (In Chinese)
[37]
Committee for Chinese Terms in Palaeontology (2009) Chinese Terms in Palaeontology. 2nd Edition, Science Press.
[38]
International Committee for Phytolith Taxonomy (ICPT), Vrydaghs, L., Neuman, K., Strömberg, C., Ball, T., Albert, R. and Cummings, L.S. (2019) International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany, 124, 189-199. https://doi.org/10.1093/aob/mcz064
[39]
Benvenuto, M.L., Fernández Honaine, M., Osterrieth, M.L. and Morel, E. (2015) Differentiation of Globular Phytoliths in Arecaceae and Other Monocotyledons: Morphological Description for Paleobotanical Application. Turkish Journal of Botany, 39, 341-353. https://doi.org/10.3906/bot-1312-72
[40]
An, X.H. (2016) Morphological Characteristics of Phytoliths from Representative Conifers in China. Palaeoworld, 25, 116-127. https://doi.org/10.1016/j.palwor.2016.01.002
[41]
Liu, L., Jie, D., Liu, H., Guo, M. and Li, N. (2014) Change Characters of Phragmites Australis Phytolith in Northeast China. Chinese Journal of Plant Ecology, 37, 861-871. https://doi.org/10.3724/sp.j.1258.2013.00090
[42]
Stevanato, M., Rasbold, G.G., Parolin, M., Domingos Luz, L., Lo, E., Weber, P., et al. (2019) New Characteristics of the Papillae Phytolith Morphotype Recovered from Eleven Genera of Cyperaceae. Flora, 253, 49-55. https://doi.org/10.1016/j.flora.2019.03.012
[43]
Tang, X.G., Xie, J.S., Chen, D.Z. and Liu, G.R. (2019) The Morphological Characteristics of Fan-Shaped Phytolith of Rice Based on Large Sample. Acta Palaeontologica Sinica, 58, 543-551. (In Chinese)
[44]
Ge. Y., Lu, H.Y., Wang, C. and Gao, X. (2020) Phytoliths in Selected Broad Leaved Trees in China. Scientific Reports, 10, Article No. 15577. https://doi.org/10.1038/s41598-020-72547-w
[45]
Ge. Y., Wang, C. and Zhang, L. (2022) Phytoliths in Selected Ferns from Southwestern China. Review of Palaeobotany and Palynology, 301, Article ID: 104646. https://doi.org/10.1016/j.revpalbo.2022.104646
[46]
Witteveen, N.H., Hobus, C.E.M., Philip, A., Piperno, D.R. and McMichael, C.N.H. (2022) The Variability of Amazonian Palm Phytoliths. Review of Palaeobotany and Palynology, 300, Article ID: 104613. https://doi.org/10.1016/j.revpalbo.2022.104613
[47]
Gao, G.Z., Jie, D.M., Liu, L.D., Liu, H.Y., Gao, Z., Li, D.H. and Li, N.N. (2018) Phytolith Characteristics and Preservation in Trees from Coniferous and Broad-Leaved Mixed Forest in an Eastern Mountainous Area of Northeast China. Review of Palaeobotany and Palynology, 255, 43-56. https://doi.org/10.1016/j.revpalbo.2018.05.001
[48]
Croft, D.A., Su, D.F. and Simpson, S.W. (2018) Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer. https://doi.org/10.1007/978-3-319-94265-0
[49]
Huan, X.J., Lu, H.Y., Wang, C., Tang, X.G., Zuo, X.X., Ge, Y. and He, K.Y. (2015) Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China. PLOS ONE, 10, e0141255. https://doi.org/10.1371/journal.pone.0141255
[50]
Huan, X.J., Lu, H.Y., Wang, C. and Zhang, J.P. (2020) Progress of Rice Bulliform Phytolith Research on Wild-Domesticated Characteristics. Acta Palaeontologica Sinica, 59, 467-478. (In Chinese)
[51]
Tang, X., Lu, H., Cao, Z. and Xie, J. (2021) Morphological Characteristics of Homozygous Wild Rice Phytoliths and Their Significance in the Study of Rice Origins. Science China Earth Sciences, 65, 107-117. https://doi.org/10.1007/s11430-021-9835-6
[52]
Zhao, Z. and Piperno, D.R. (2000) Late Pleistocene/Holocene Environments in the Middle Yangtze River Valley, China and Rice (Oryza sativa L.) Domestication: The Phytolith Evidence. Geoarchaeology, 15, 203-222. https://doi.org/10.1002/(sici)1520-6548(200002)15:2<203::aid-gea5>3.0.co;2-j
[53]
Huan, X., Lu, H., Zhang, J. and Wang, C. (2018) Phytolith Assemblage Analysis for the Identification of Rice Paddy. Scientific Reports, 8, Article No. 10932. https://doi.org/10.1038/s41598-018-29172-5
[54]
Lu, H.Y. and Liu, K.B. (2003) Morphological Variations of Lobate Phytoliths from Grasses in China and the South-Eastern United States. Diversity and Distributions, 9, 73-87. https://doi.org/10.1046/j.1472-4642.2003.00166.x
[55]
Murungi, M.L. and Bamford, M.K. (2020) Revised Taxonomic Interpretations of Cyperaceae Phytoliths for (Paleo) Botanical Studies with Some Notes on Terminology. Review of Palaeobotany and Palynology, 275, Article ID: 104189. https://doi.org/10.1016/j.revpalbo.2020.104189
[56]
Eichhorn, B., Neumann, K. and Garnier, A. (2010) Seed Phytoliths in West African Commelinaceae and Their Potential for Palaeoecological Studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 300-310. https://doi.org/10.1016/j.palaeo.2010.10.004
[57]
Sundue, M. (2009) Silica Bodies and Their Systematic Implications in Pteridaceae (Pteridophyta). Botanical Journal of the Linnean Society, 161, 422-435. https://doi.org/10.1111/j.1095-8339.2009.01012.x
[58]
Pearsall, D. (1978) Phytolith Analysis of Archeological Soils: Evidence for Maize Cultivation in Formative Ecuador. Science, 199, 177-178. https://doi.org/10.1126/science.199.4325.177
[59]
Iriarte, J. (2003) Assessing the Feasibility of Identifying Maize through the Analysis of Cross-Shape Size and Three-Dimensional Morphology of Phytoliths in the Grasslands of Southeastern South America. Journal of Archaeological Science, 30, 1085-1904. https://doi.org/10.1016/S0305-4403(02)00164-4
[60]
Ball, T., Gardner, J.S. and Brotherson, J.D. (1996) Identifying Phytoliths Produced by the Inflorescence Bracts of Three Species of Wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) Using Computer-Assisted Image and Statistical Analyses. Journal of Archaeological Science, 23, 619-632. https://doi.org/10.1006/jasc.1996.0058
[61]
Zhang, J., Lu, H. and Huang, L. (2014) Calciphytoliths (Calcium Oxalate Crystals) Analysis for the Identification of Decayed Tea Plants (Camellia sinensis L.). Scientific Reports, 4, Article No. 6703. https://doi.org/10.1038/srep06703
[62]
Lu, H., Zhang, J., Yang, Y., Yang, X., Xu, B., Yang, W., et al. (2016) Earliest Tea as Evidence for One Branch of the Silk Road across the Tibetan Plateau. Scientific Reports, 6, Article No. 18955. https://doi.org/10.1038/srep18955
[63]
Jiang, J.R., Lu, G.Q., Wang, Q. and Wei, S.Y. (2021) The Analysis and Identification of Charred Suspected Tea Remains Unearthed from Warring State Period Tomb. Scientific Reports, 11, Article No. 16557. https://doi.org/10.1038/s41598-021-95393-w