全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

n-倾斜余模的局部化
Localization in n-Tilting Comodules

DOI: 10.12677/aam.2024.136253, PP. 2653-2657

Keywords: 余代数,n-倾斜余模,局部化
Coalgebra
, n-Tilting Comodules, Localization

Full-Text   Cite this paper   Add to My Lib

Abstract:

局部化理论和倾斜理论在余代数理论中都有非常重要的作用。Simson提出要发展余代数上的(余)倾斜理论的公开问题。为部分解决这个公开问题,本文利用局部化技术来给出n-倾斜余模的局部化。
Localization theory and tilting theory both play very important roles in the theory of coalgebra. Simson proposed an open question on the development of (co)tilting theory on coalgebras. To partially address this public issue, this article utilizes localization techniques to provide localization of n-tilting comodules.

References

[1]  Gabriel, P. (1962) Des Catégories Abéliennes. Bulletin de la Société Mathématique de France, 79, 323-448.
https://doi.org/10.24033/bsmf.1583
[2]  Garulo, G.N. (2006) Representation Theory of Coalgebras. Localization in Coalgebras. PhD Thesis, Universidad de Granada.
[3]  Jara, P., Merino, L., Navarro, G. and Ruiz, J.F. (2006) Localization in Coalgebras. Stable Localizations and Path Coalgebras. Communications in Algebra, 34, 2843-2856.
https://doi.org/10.1080/00927870600637066
[4]  Simson, D. (2001) Coalgebras, Comodules, Pseudocompact Algebras and Tame Comodule Type. Colloquium Mathematicum, 90, 101-150.
https://doi.org/10.4064/cm90-1-9
[5]  Simson, D. (2008) Cotilted Coalgebras and Tame Comodule Type. Arabian Journal for Science and Engineering, 33, 421-445.
[6]  Wang, M. (1999) Tilting Comodules over Semi-Perfect Coalgebras. Algebra Colloquium, 6, 461-472.
[7]  N?st?sescu, C. and Torrecillas, B. (1996) Colocalization on Grothendieck Categories with Applications to Coalgebras. Journal of Algebra, 185, 108-124.
https://doi.org/10.1006/jabr.1996.0315
[8]  Woodcock, D. (1997) Some Categorical Remarks on the Representation Theory of Coalgebras. Communications in Algebra, 25, 2775-2794.
https://doi.org/10.1080/00927879708826022
[9]  Lin, B.I. (1977) Semiperfect Coalgebras. Journal of Algebra, 49, 357-373.
https://doi.org/10.1016/0021-8693(77)90246-0
[10]  Doi, Y. (1981) Homological Coalgebra. Journal of the Mathematical Society of Japan, 33, 31-50.
https://doi.org/10.2969/jmsj/03310031
[11]  Nastasescu, C., Torrecillas, B. and Zhang, Y.H. (1996) Hereditary Coalgebras. Communications in Algebra, 24, 1521-1528.
https://doi.org/10.1080/00927879608825649
[12]  Iovanov, M.C. (2006) Co-Frobenius Coalgebras. Journal of Algebra, 303, 146-153.
https://doi.org/10.1016/j.jalgebra.2006.04.028
[13]  Adaámek, J. (2005) Introduction to Coalgebra. Theory and Applications of Categories, 14, 157-199.
[14]  Hofmann, D. and Nora, P. (2020) Hausdorff Coalgebras. Applied Categorical Structures, 28, 773-806.
https://doi.org/10.1007/s10485-020-09597-8
[15]  Arenas, M., Labra, A. and Paniello, I. (2021) Lotka-Volterra Coalgebras. Linear and Multilinear Algebra, 70, 4483-4497.
https://doi.org/10.1080/03081087.2021.1882372
[16]  Simson, D. (2008) Tame-Wild Dichotomy for Coalgebras. Journal of the London Mathematical Society, 78, 783-797.
https://doi.org/10.1112/jlms/jdn047
[17]  Li, Y. and Yao, H. (2020) Tilting Torsion-Free Classes in the Category of Comodules. Bulletin of the Iranian Mathematical Society, 47, 553-567.
https://doi.org/10.1007/s41980-020-00398-2
[18]  Li, Y. and Yao, H. (2021) Localization and Colocalization in Tilting Torsion Theory for Coalgebras. Czechoslovak Mathematical Journal, 71, 663-688.
https://doi.org/10.21136/cmj.2021.0038-20
[19]  李园, 姚海楼. 余模范畴中的余倾斜预包络和余倾斜挠类[J]. 数学年刊: A辑, 2020, 41(4): 14.
[20]  李园, 姚海楼. 关于余模范畴中的挠自由类与覆盖类[J]. 山东大学学报(理学版), 2020, 55(8): 1-5.
[21]  李园, 姚海楼. 余倾斜挠类和包络余模[J]. 北京工业大学学报, 2021, 47(12): 1388-1394.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133