全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

稀土Eu离子掺杂TiO2的结构变化研究
Study of Structural Change of TiO2 Doped with Rear Earth Eu Ions

DOI: 10.12677/ms.2024.146088, PP. 801-807

Keywords: TiO2,结构,Raman,掺杂
TiO2
, Structure, Raman, Dope

Full-Text   Cite this paper   Add to My Lib

Abstract:

TiO2是典型两性氧化物,是一种性能较好的白色颜料。本文采用拉曼散射方法研究了压力下Eu离子掺杂的TiO2/Eu3+材料的结构变化特性。在低压力区,Eg和A1g两个Raman振动模式峰随压力变化系数为0.095 nm/GPa和0.074 nm/GPa。在高压力区间,金红石结构的A1g模式逐渐减弱,特征峰546 nm峰位随压力的变化行为在15.7 GPa出现明显变化,且线性变化系数变为0.03 nm/GPa。金红石结构TiO2/Eu3+在15.7 GPa发生由金红石结构到斜锆石结构的压致结构转变。相变压力高于文献中报道,在掺杂进入少量其他尺寸的离子可以对其基质晶格结构压力稳定范围进行调制。
TiO2 is a typical amphoteric oxide and a high-performance white pigment. Raman scattering method is used to study the structural change characteristics of Eu ion doped TiO2/Eu3+ materials under pressure. In the low pressure region, the two Raman vibration peaks of Eg and A1g exhibit pressure variation coefficients of 0.095 nm/GPa and 0.074 nm/GPa. In the high pressure range, the A1g mode of the rutile structure gradually weakens, and the characteristic peak at 546 nm exhibits a significant change at 15.7 GPa, with another linear variation coefficient of 0.03 nm/GPa. The rutile structure of TiO2/Eu3+ undergoes a pressure induced structural transition from rutile structure to baddeleyite structure at 15.7 GPa. The phase transition pressure is higher than reported pressure, and doping with a small amount of other sized ions can modulate the pressure stability range of its matrix lattice structure.

References

[1]  Chen, X. and Mao, S.S. (2007) Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107, 2891-2959.
https://doi.org/10.1021/cr0500535

[2]  Bavykin, D.V., Friedrich, J.M. and Walsh, F.C. (2006) Protonated Titanates and Tio2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18, 2807-2824.
https://doi.org/10.1002/adma.200502696

[3]  Grimes, C.A. (2007) Synthesis and Application of Highly Ordered Arrays of Tio2 Nanotubes. Journal of Materials Chemistry, 17, 1451-1457.
https://doi.org/10.1039/b701168g

[4]  Swamy, V., Dubrovinsky, L.S., Dubrovinskaia, N.A., Simionovici, A.S., Drakopoulos, M., Dmitriev, V., et al. (2003) Compression Behavior of Nanocrystalline Anatase Tio2. Solid State Communications, 125, 111-115.
https://doi.org/10.1016/s0038-1098(02)00601-4

[5]  Wang, Z., Saxena, S.K., Pischedda, V., Liermann, H.P. and Zha, C.S. (2001) X-Ray Diffraction Study on Pressure-Induced Phase Transformations in Nanocrystalline Anatase/Rutile (Tio2). Journal of Physics: Condensed Matter, 13, 8317-8323.
https://doi.org/10.1088/0953-8984/13/36/307

[6]  Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., Caruso, R.A., Shchukin, D.G. and Muddle, B.C. (2005) Finite-Size and Pressure Effects on the Raman Spectrum of Nanocrystalline Anatasetio. Physical Review B, 71, Article ID: 184302.
https://doi.org/10.1103/physrevb.71.184302

[7]  Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., McMillan, P.F., Prakapenka, V.B., Shen, G., et al. (2006) Size-Dependent Pressure-Induced Amorphization in Nanoscaletio. Physical Review Letters, 96, Article ID: 135702.
https://doi.org/10.1103/physrevlett.96.135702

[8]  Wang, C., Wang, Y. and Gao, C. (2019) Grain Boundary Electrical Characteristics for Rutile Tio2 under Pressure. Acta Physica Sinica, 68, Article ID: 206401.
https://doi.org/10.7498/aps.68.20190630

[9]  Pischedda, V., Hearne, G.R., Dawe, A.M. and Lowther, J.E. (2006) Ultrastability and Enhanced Stiffness of ~6 nm Tio2 Nanoanatase and Eventual Pressure-Induced Disorder on the Nanometer Scale. Physical Review Letters, 96, Article ID: 035509.
https://doi.org/10.1103/physrevlett.96.035509

[10]  Hearne, G.R., Zhao, J., Dawe, A.M., Pischedda, V., Maaza, M., Nieuwoudt, M.K., et al. (2004) Effect of Grain Size on Structural Transitions in Anatase TiO2: A Raman Spectroscopy Study at High Pressure. Physical Review B, 70, Article ID: 134102.
https://doi.org/10.1103/physrevb.70.134102

[11]  Wang, Z. and Saxena, S.K. (2001) Raman Spectroscopic Study on Pressure-Induced Amorphization in Nanocrystalline Anatase (TiO2). Solid State Communications, 118, 75-78.
https://doi.org/10.1016/s0038-1098(01)00046-1

[12]  Lagarec, K. and Desgreniers, S. (1995) Raman Study of Single Crystal Anatase TiO2 up to 70 GPa. Solid State Communications, 94, 519-524.
https://doi.org/10.1016/0038-1098(95)00129-8

[13]  Gerward, L. and Staun Olsen, J. (1997) Post-rutile High-Pressure Phases in TiO2. Journal of Applied Crystallography, 30, 259-264.
https://doi.org/10.1107/s0021889896011454

[14]  Machon, D., Le Bail, N., Hermet, P., Cornier, T., Daniele, S. and Vignoli, S. (2018) Pressure-Induced Phase Transitions in TiO2 Rutile Nanorods. The Journal of Physical Chemistry C, 123, 1948-1953.
https://doi.org/10.1021/acs.jpcc.8b10057

[15]  Hong, M., Dai, L., Li, H., Hu, H., Liu, K., Yang, L., et al. (2019) Structural Phase Transition and Metallization of Nanocrystalline Rutile Investigated by High-Pressure Raman Spectroscopy and Electrical Conductivity. Minerals, 9, Article 441.
https://doi.org/10.3390/min9070441

[16]  Flank, A.M., Lagarde, P., Itié, J.P., Polian, A. and Hearne, G.R. (2008) Pressure-Induced Amorphization and a Possible Polyamorphism Transition in Nanosizedtio2: An X-Ray Absorption Spectroscopy Study. Physical Review B, 77, Article ID: 224112.
https://doi.org/10.1103/physrevb.77.224112

[17]  Dubrovinskaia, N.A., Dubrovinsky, L.S., Ahuja, R., Prokopenko, V.B., Dmitriev, V., Weber, H.P., et al. (2001) Experimental and Theoretical Identification of a New High-Pressure TiO2 polymorph. Physical Review Letters, 87, Article ID: 275501.
https://doi.org/10.1103/physrevlett.87.275501

[18]  Armstrong, G., Armstrong, A.R., Canales, J. and Bruce, P.G. (2005) Nanotubes with the TiO2-B Structure. Chemical Communications, 2005, 2454-2456.
https://doi.org/10.1039/b501883h

[19]  Lu, X., Gao, S., Wu, P., Zhang, Z., Zhang, L., Li, X., et al. (2023) In Situ High-Pressure Raman Spectroscopic, Single-Crystal X-Ray Diffraction, and FTIR Investigations of Rutile and TiO2ii. Minerals, 13, Article 703.
https://doi.org/10.3390/min13050703

[20]  Shu, Y., Kono, Y., Ohira, I., Li, Q., Hrubiak, R., Park, C., et al. (2019) Observation of 9-Fold Coordinated Amorphous TiO2 at High Pressure. The Journal of Physical Chemistry Letters, 11, 374-379.
https://doi.org/10.1021/acs.jpclett.9b03378

[21]  Xiao, W.S., Zhang, H., Tan, D.Y., Weng, K.N., Li, Y.C., Luo, C.J. and Xie, H.S. (2007) Raman Characterization of Rutile Phase Transitions under High-Pressure and High-Temperature. Spectroscopy and Spectral Analysis, 27, 1340-1343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133