全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于密度泛函理论及虚晶近似的(PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17 (x = 0~0.2)磁性研究
Study of (PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17 (x = 0~0.2) Based on Density Functional Theory and Virtual Crystal Approximation

DOI: 10.12677/ms.2024.146087, PP. 791-800

Keywords: 第一性原理,虚晶近似,波尔磁矩,(PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17
First-Principles
, Virtual Crystal Approximation, Bohr Magnetic Moment, (PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sm2Co17作为第二代高磁密度材料得到广泛关注,研究表明,基于Sm2Co17的镨(Pr)、铜(Cu)、铁(Fe)四元掺杂能显著提升其磁性能,为研究不同镨掺杂浓度对Sm2Co17磁性影响,本文基于第一性原理密度泛函理论、平面波赝势及虚晶近似法,结合CASTEP软件包,使用LDA + U并进行自旋极化计算,研究了镨(Pr)、铜(Cu)、铁(Fe)元素替位掺杂Sm2Co17体系:(PrxSm1x)2(Co0.7Cu0.2Fe0.1)17的体系能量、分态密度、波尔磁矩等性质,研究表明,(PrxSm1x)2(Co0.7Cu0.2Fe0.1)17体系的总态密度在?40 eV附近主要由S轨道贡献,总态密度在?20 eV附近主要由P轨道贡献,镨(Pr)掺杂对D轨道和F轨道贡献最大,铜(Cu)、铁(Fe)元素掺杂对S轨道、P轨道和F轨道贡献较大,而F轨道贡献则来自于镨(Pr)且其自旋向下的密度远高于其自旋向上的密度,同时,随着镨元素掺杂比例的提高,体系总能量在逐步降低,说明体系更加稳定,同时,随着掺杂比例的不断变化,体系的波尔磁矩结果呈现波动特性,在x = 0.1时,(PrxSm1x)2(Co0.7Cu0.2Fe0.1)17呈现出更低的体系总能量和更高的波尔磁矩,说明镨(Pr)掺杂比例10%时(PrxSm1x)2(Co0.7Cu0.2Fe0.1)17体系具有更优的磁性能,本文的研究有助于优化钐钴四元掺杂永磁体的设计。
Sm2Co17 as a second-generation high magnetic density material has received wide attention, and studies have shown that praseodymium (Pr), copper (Cu), iron (Fe) quaternary doping based on Sm2Co17 can significantly enhance its magnetic properties, in order to study the effect of different praseodymium doping concentration on the magnetic properties of Sm2Co17, this paper is based on the first-principles density functional theory, plane-wave artifacts and virtual crystal approximation method, combined with CASTEP software package, using LDA+U and spin-polari- zation calculations, the system energy, fractional density, and Bohr magnetic moment of the praseodymium (Pr), copper (Cu), and iron (Fe) elemental substitution-doped Sm2Co17 system: (PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17 are investigated, which show that the system energy, fractional density, and Bohr magnetic moment of the (PrxSm1?x)2(Co0.7Cu0.2Fe0.1)17 system is mainly contributed by the s-orbitals near ?40 eV and the P-orbitals near ?20 eV, praseodymium (Pr) doping contributes the most to the D-orbitals and F-orbitals, and copper (Cu) and iron (Fe) elemental doping contributes to the S-orbitals, P-orbitals and F-orbitals. The F-orbital contribution is from praseodymium (Pr) and its

References

[1]  曹晓, 单杰锋, 俞能君, 等. 高使用温度Sm2Co17型永磁材料研究进展[J]. 中国计量大学学报, 2019, 30(4): 449-456, 489.
[2]  Park, J., Kwon, H., Park, J., Ro, J.C. and Suh, S. (2022) Synthesis and Characterization of Sm2Co17 Using Electrodeposition and Reduction-Diffusion Process. Journal of Alloys and Compounds, 901, Article 163669.
https://doi.org/10.1016/j.jallcom.2022.163669
[3]  Seyring, M., Song, X., Zhang, Z. and Rettenmayr, M. (2015) Concurrent Ordering and Phase Transformation in Sm2Co17 Nanograins. Nanoscale, 7, 12126-12132.
https://doi.org/10.1039/c5nr02592c
[4]  Ramudu, M. and Rajkumar, D.M. (2018). Role of Aging Time on the Magnetic Properties of Sm2Co17 Permanent Magnets Processed through Cold Isostatic Pressing. AIP Conference Proceedings, Mumbai, 26-30 December 2017.
https://doi.org/10.1063/1.5029120
[5]  朱生志. Sm2Co17型稀土永磁的时效处理及磁性能和力学性能研究[D]: [博士学位论文]. 长沙: 中南大学, 2023.
[6]  贾淑琳, 史慧刚, 向俊尤. 固溶处理对Sm2Co17磁体微结构及磁性能的影响[J/OL]. 中国稀土学报, 1-10.
http://kns.cnki.net/kcms/detail/11.2365.TG.20230828.0921.002.html, 2024-06-17
[7]  Guo, X., Guo, Y. and Yin, L. (2021) Structural Stability, Magnetic Properties and Hardness of Equiatomic Light Rare Earth-Cobalt with CaCu5 Type Structure before and after Adding Y. Journal of Solid State Chemistry, 302, Article 122436.
https://doi.org/10.1016/j.jssc.2021.122436
[8]  Nguyen, M.C., Yao, Y., Wang, C., Ho, K. and Antropov, V.P. (2018) Magnetocrystalline Anisotropy in Cobalt Based Magnets: A Choice of Correlation Parameters and the Relativistic Effects. Journal of Physics: Condensed Matter, 30, Article 195801.
https://doi.org/10.1088/1361-648x/aab9fa
[9]  Ojima, T., Tomizawa, S., Yoneyama, T. and Hori, T. (1977) Magnetic Properties of a New Type of Rare-Earth Cobalt Magnets Sm2 (Co, Cu, Fe, M) 17. IEEE Transactions on Magnetics, 13, 1317-1319.
https://doi.org/10.1109/tmag.1977.1059703
[10]  王路, 汪鹏, 王翘楚, 等. 稀土资源的全球分布与开发潜力评估[J]. 科技导报, 2022, 40(8): 27-39.
[11]  林河成. 金属镨的生产及其应用发展[J]. 金属世界, 2007(2): 52-55.
[12]  Xu, M., Yue, M., Li, Y., Wu, Q. and Gao, Y. (2016) Structure and Intrinsic Magnetic Properties of Sm1-x Prx Co5 (x=0?0.6) Compounds. Rare Metals, 35, 627-631.
https://doi.org/10.1007/s12598-016-0774-8
[13]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
https://doi.org/10.1103/physrev.136.b864
[14]  Kohn, W. and Sham, L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 140, A1133-A1138.
https://doi.org/10.1103/physrev.140.a1133
[15]  Bellaiche, L. and Vanderbilt, D. (2000) Virtual Crystal Approximation Revisited: Application to Dielectric and Piezoelectric Properties of Perovskites. Physical Review B, 61, 7877-7882.
https://doi.org/10.1103/physrevb.61.7877
[16]  Ramer, N.J. and Rappe, A.M. (2000) Application of a New Virtual Crystal Approach for the Study of Disordered Perovskites. Journal of Physics and Chemistry of Solids, 61, 315-320.
https://doi.org/10.1016/s0022-3697(99)00300-5
[17]  Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[18]  Kass, R.E. and Dennis, J.E. (1985) [Review of Numerical Methods for Unconstrained Optimization and Nonlinear Equations. by R. B. Schnabel]. Journal of the American Statistical Association, 80, 247-248.
https://doi.org/10.2307/2288097
[19]  Yehia, S., Aly, S., Hamid, A., et al. (2006) Magnetic Properties and Band Structure Calculation of SmCo5. International Journal of Pure and Applied Physics, 2, 205-213.
[20]  Ucar, H., Choudhary, R. and Paudyal, D. (2020) An Overview of the First Principles Studies of Doped RE-TM5 Systems for the Development of Hard Magnetic Properties. Journal of Magnetism and Magnetic Materials, 496, Article 165902.
https://doi.org/10.1016/j.jmmm.2019.165902
[21]  Liu, X.B. and Altounian, Z. (2011) Magnetic Moments and Exchange Interaction in Sm(co, Fe)5 from First-Principles. Computational Materials Science, 50, 841-846.
https://doi.org/10.1016/j.commatsci.2010.10.019
[22]  Clementi, E., Raimondi, D.L. and Reinhardt, W.P. (1967) Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics, 47, 1300-1307.
https://doi.org/10.1063/1.1712084
[23]  田建军, 尹海清, 曲选辉. Sm2Co17稀土永磁材料的研究概况[J]. 磁性材料及器件, 2005, 36(4): 12-15.
[24]  Shang, Z., Zhang, D., Xie, Z., Wang, Y., Haseeb, M., Qiao, P., et al. (2021) Effects of Copper and Zirconium Contents on Microstructure and Magnetic Properties of Sm(Co, Fe, Cu, Zr)z Magnets with High Iron Content. Journal of Rare Earths, 39, 160-166.
https://doi.org/10.1016/j.jre.2020.03.002
[25]  Jia, W., Liu, Y., Yuan, T., Wang, F., Chen, Y. and Ma, T. (2022) Grain Boundary Segregation Behavior in Fe-Rich Sm-Co-Fe-Cu-Zr Magnets. Materialia, 22, Article 101382.
https://doi.org/10.1016/j.mtla.2022.101382
[26]  Solorza-Guzmán, M., Ramírez-Dámaso, G. and Castillo-Alvarado, F.L. (2021) A DFT Study in Bulk Magnetic Moment of FexCo1-x (0≤X≤1). Bulletin of Materials Science, 44, Article No. 93.
https://doi.org/10.1007/s12034-021-02412-7
[27]  Bouchet, G., Laforest, J., Lemaire, R., et al. (1965) Structures cristallines des composés intermétalliques T2CO7 et TCO3 (T=Terre Rare ou Yttrium). Bulletin de Minéralogie, 88, 580-585.
[28]  Buschow, K.H.J. and Van Der Goot, A.S. (1968) Intermetallic Compounds in the System Samarium-Cobalt. Journal of the Less Common Metals, 14, 323-328.
https://doi.org/10.1016/0022-5088(68)90037-4
[29]  Saal, J.E., Kirklin, S., Aykol, M., Meredig, B. and Wolverton, C. (2013) Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM, 65, 1501-1509.
https://doi.org/10.1007/s11837-013-0755-4
[30]  Wallace, W.E. (2012) Rare Earth Intermetallics. Elsevier, Amsterdam.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133