全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

慢性阻塞性肺疾病相关性肺动脉高压的发病机制研究进展
Research Progress on Pathogenesis of Pulmonary Hypertension Associated with Chronic Obstructive Pulmonary Disease

DOI: 10.12677/jcpm.2024.32056, PP. 380-386

Keywords: 慢性阻塞性肺疾病,肺动脉高压,发病机制
Chronic Obstructive Pulmonary Disease
, Pulmonary Hypertension, Pathogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

慢性阻塞性肺疾病(COPD)相关性肺动脉高压(PH)是一种影响肺血管结构和功能的慢性不可逆性病变。COPD患者长期缺氧的状态会逐渐使肺血管收缩并重构,进而形成PH,最终会导致右心衰竭,严重影响人民群众的身体健康及生活质量;在目前的研究中,COPD相关性PH的发病机制尚未完全阐明,肺血管重构、内皮损伤、肺血管收缩、炎症反应、血液高凝、遗传因素等都参与其中,本文对COPD相关性PH的发病机制研究进展进行了综述。
Pulmonary hypertension (PH) associated with chronic obstructive pulmonary disease (COPD) is a chronic irreversible disease that affects the structure and function of pulmonary blood vessels. Chronic hypoxia in COPD patients will gradually cause pulmonary blood vessels to constrict and restructure, thus forming pulmonary hypertension and eventually leading to right heart failure, which seriously affects people’s health and quality of life. In current studies, the pathogenesis of PH associated with COPD has not been fully elucidated, and pulmonary vascular remodeling, endothelial injury, pulmonary vasoconstriction, inflammatory response, blood hypercoagulability, and genetic factors are all involved. This paper reviews the progress of research on the pathogenesis of PH associated with COPD.

References

[1]  Zheng, R.X., Xu, T.T., Wang, X.H., et al. (2023) Stem Cell Therapy in Pulmonary Hypertension: Current Practice and Future Opportunities. European Respiratory Review: An Official Journal of the European Respiratory Society, 32, Article ID: 230112.
https://doi.org/10.1183/16000617.0112-2023
[2]  Iwano, H., Yokoyama, S., Kamiya, K., et al. (2019) Abstract 10794: Significance and Prognostic Impact of V Wave on Pulmonary Artery Pressure in Patients with Heart Failure: Beyond the Wedge Pressure. Circulation, 140, A10794.
[3]  郭佳琪, 徐磊, 徐鹏. 间歇性低氧对肺血管影响的研究进展[J]. 临床肺科杂志, 2024, 29(1): 100-105.
[4]  王文艳, 徐兴祥, 赵宇波. 慢阻肺的早筛早诊的研究进展[J]. 临床肺科杂志, 2023, 28(5): 749-754.
[5]  黄华, 张建卿, 樊宗明, 等. 肺动脉高压去交感神经术的研究进展[J]. 心肺血管病杂志, 2023, 42(4): 383-385.
[6]  Moore, J.P., Simpson, L.L. and Drinkhill, M.J. (2022) Differential Contributions of Cardiac, Coronary and Pulmonary Artery Vagal Mechanoreceptors to Reflex Control of the Circulation. The Journal of Physiology, 600, 4069-4087.
https://doi.org/10.1113/JP282305
[7]  Huang, H. and Yang, L.M. (2023) Research Progress of Inflammatory Factors in Chronic Obstructive Pulmonary Disease with Pulmonary Hypertension at High Altitude. Alternative Therapies in Health and Medicine, 29, 689-693.
[8]  佟艳明, 肖保军. 右心室纵向应变评价肺动脉高压患者右心室功能的研究[J]. 心肺血管病杂志, 2020, 39(10): 1234-1238.
[9]  Chen, J.Y., Rodriguez, M., Miao, J.R., et al. (2022) Mechanosensitive Channel Piezo1 Is Required for Pulmonary Artery Smooth Muscle Cell Proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 322, L737-L760.
https://doi.org/10.1152/ajplung.00447.2021
[10]  Chen, T.J., Sun, M.R., Zhou, Q.Y., et al. (2022) Extracellular Vesicles Derived from Endothelial Cells in Hypoxia Contribute to Pulmonary Artery Smooth Muscle Cell Proliferation In-Vitro and Pulmonary Hypertension in Mice. Pulmonary Circulation, 12, e12014.
https://doi.org/10.1002/pul2.12014
[11]  Truong, L.N., Santos, E.W., Zheng, Y.-M. and Wang, Y.-X. (2023) Rieske Iron-Sulfur Protein Mediates Pulmonary Hypertension Following Nicotine/Hypoxia Coexposure. American Journal of Respiratory Cell and Molecular Biology, 70, 193-202.
[12]  Jia, Q., Ouyang, Y.L., Yang, Y.Y., et al. (2023) Adipokines in Pulmonary Hypertension: Angels or Demons? Heliyon, 9, e22482.
https://doi.org/10.1016/j.heliyon.2023.e22482
[13]  罗勤, 熊长明. 肺血管病右心导管术操作指南[J]. 中国循环杂志, 2022, 37(12): 1186-1194.
[14]  Li, M.X., Ying, M.F., Gu, S.L., et al. (2023) Matrine Alleviates Hypoxia-Induced Inflammation and Pulmonary Vascular Remodelling via RPS5/NF-κB Signalling Pathway. Journal of Biochemical and Molecular Toxicology, 38, e23583.
https://doi.org/10.1002/jbt.23583
[15]  王嘉琦, 李为昊, 陈玉成. 高原肺动脉高压研究进展[J]. 中国心血管杂志, 2023, 28(6): 601-606.
[16]  王喜梅, 吴永健. 可溶性鸟苷酸环化酶激动剂的心血管保护作用研究进展[J]. 心血管病学进展, 2021, 42(5): 404-407.
https://doi.org/10.16806/j.cnki.issn.1004-3934.2021.05.005
[17]  Morris, H.E., Neves, K.B., Nilsen, M., et al. (2023) Notch3/Hes5 Induces Vascular Dysfunction in Hypoxia-Induced Pulmonary Hypertension through ER Stress and Redox-Sensitive Pathways. Hypertension (Dallas, Tex.: 1979), 80, 1683-1696.
https://doi.org/10.1161/HYPERTENSIONAHA.122.20449
[18]  Jesus, L.P., Inmaculada, D., Angela, N.G., et al. (2017) Vascular Sexual Dimorphism and Pulmonary Hypertension in a Rat Chronic Hypoxia Model. European Respiratory Journal, 50, PA2381.
[19]  陈洪流, 李超乾. cAMP/Epac信号通路在ARDS中的作用研究进展[J]. 医学研究杂志, 2023, 52(5): 180-183.
[20]  Psotka, M., Thomeas-McEwing, V., Gamazon, E., et al. (2019) Two Polymorphic Gene Loci Associated with Treprostinil Dose in Pulmonary Arterial Hypertension. Journal of Heart and Lung Transplantation, 38, S208.
https://doi.org/10.1016/j.healun.2019.01.505
[21]  朱春梅. 内皮素-1、中性粒细胞/淋巴细胞比率、血小板/淋巴细胞比率及N末端脑钠肽前体在慢性阻塞性肺疾病合并肺动脉高压患者中的表达水平及临床意义[J]. 现代医学与健康研究电子杂志, 2023, 7(23): 104-108.
[22]  沈慧, 张振刚, 龚开政. 肺动脉高压动物模型与分子机制的研究进展[J]. 中华临床医师杂志(电子版), 2019, 13(2): 141-146.
[23]  袁好鑫, 刘幸幸. 内皮素-1在低氧性肺动脉高压发生发展中的作用[J]. 临床肺科杂志, 2022, 27(5): 759-764.
[24]  Reichenbach, A., Al-Hiti, H., Malek, I., et al. (2013) The Effects of Phosphodiesterase 5 Inhibition on Hemodynamics, Functional Status and Survival in Advanced Heart Failure and Pulmonary Hypertension: A Case-Control Study. International Journal of Cardiology, 168, 60-65.
https://doi.org/10.1016/j.ijcard.2012.09.074
[25]  沈节艳, 庄琦. 2018中国肺高血压诊断和治疗指南解读[J]. 中国循环杂志, 2019, 34(S1): 115-119.
[26]  Sullivan, C.C., Du, L.L., Chu, D., et al. (2003) Induction of Pulmonary Hypertension by an Angiopoietin 1/TIE2/Serotonin Pathway. Proceedings of the National Academy of Sciences of the United States of America, 100, 12331-12336.
https://doi.org/10.1073/pnas.1933740100
[27]  段雅静, 成孟瑜. 慢性阻塞性肺疾病合并肺动脉高压发病机制研究进展[J]. 临床肺科杂志, 2021, 26(5): 776-780.
[28]  朱珊英, 朱国斌. 肺动脉高压发病机制新进展[J]. 心血管病学进展, 2020, 41(3): 292-295.
https://doi.org/10.16806/j.cnki.issn.1004-3934.2020.03.019
[29]  金鸿锦, 卢义, 丁彦春. 低氧诱导因子-1在低氧性肺动脉高压中的研究进展[J]. 心血管病学进展, 2024, 45(1): 35-39.
https://doi.org/10.16806/j.cnki.issn.1004-3934.2024.01.010
[30]  Kagami, K., Ito, K., Yada, H., et al. (2021) Abstract 12156: Loss of Thiol on C674 SERCA2 Leads to Ca2+ Mishandling with Hypertrophy in Right Ventricular Exposed to Hypoxia. Circulation, 144, A12156.
https://doi.org/10.1161/circ.144.suppl_1.12156
[31]  Nergui, S., Fukumoto, Y., et al. (2014) Role of Endothelial Nitric Oxide Synthase and Collagen Metabolism in Right Ventricular Remodeling Due to Pulmonary Hypertension. Circulation Journal, 78, 1465-1474.
https://doi.org/10.1253/circj.CJ-13-1586
[32]  王晓园, 许西琳. 慢性阻塞性肺疾病与细胞凋亡/抗凋亡的研究进展[J]. 临床肺科杂志, 2007(9): 958-959+962.
[33]  陈豫钦, 王健. 慢性阻塞性肺疾病相关的肺动脉高压病理生理学研究进展[J]. 老年医学与保健, 2018, 24(3): 229-232.
[34]  马秋晓. 肺动脉高压右心衰竭中医证型分析及益气解毒祛瘀方的干预作用研究[D]: [博士学位论文]. 北京: 中国中医科学院, 2023.
https://doi.org/10.27658/d.cnki.gzzyy.2023.000089
[35]  Farha, S., Sharp, J., Asosingh, K., et al. (2012) Mast Cell Number, Phenotype, and Function in Human Pulmonary Arterial Hypertension. Pulmonary Circulation, 2, 220-228.
https://doi.org/10.4103/2045-8932.97609
[36]  Olajuyin, A.M., Olajuyin, A.K., et al. (2023) Immunomodulatory Macrophages and Treg in Pulmonary Hypertension. Comparative Clinical Pathology, 33, 163-173.
https://doi.org/10.1007/s00580-023-03540-8
[37]  姜文明. 慢性阻塞性肺疾病患者血浆C反应蛋白及D-二聚体的变化研究[J]. 中外医学研究, 2014, 12(29): 44-45.
https://doi.org/10.14033/j.cnki.cfmr.2014.29.111
[38]  薛华. 稳定期慢性阻塞性肺疾病患者CRP、D-D水平与肺动脉高压的关系[J]. 临床肺科杂志, 2015, 20(6): 1117-1119.
[39]  Wo?owiec, ?., M?dlewska, M., Osiak, J., et al. (2023) MicroRNA and lncRNA as the Future of Pulmonary Arterial Hypertension Treatment. International Journal of Molecular Sciences, 24, Article No. 9735.
https://doi.org/10.3390/ijms24119735
[40]  易丽, 李唐志铭, 余再新. 长链非编码RNA参与肺动脉高压血管重构的研究进展[J]. 中华高血压杂志, 2020, 28(7): 685-691.
https://doi.org/10.16439/j.cnki.1673-7245.2020.07.020
[41]  郭畅, 丁超伟, 袁雅冬. 低氧性肺动脉高压中缺氧诱导因子1α调节机制的研究进展[J]. 实用心脑肺血管病杂志, 2023, 31(7): 27-32.
[42]  刘川川, 马兰, 格日力. HIF-1调控低氧性肺动脉高压[J]. 生理科学进展, 2018, 49(6): 423-427.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133