|
基于视觉协同的双机械臂物品动态抓取系统设计与实现
|
Abstract:
本文旨在设计和实现基于视觉协同的双机械臂物品动态抓取系统,采用深度相机和普通相机实现对目标物的视觉感知。搭建系统,实现空间坐标转换,将像素坐标转换为空间坐标,为后续的动态抓取路径规划提供准确的位置信息。在视觉协同算法方面,设计了动态抓取路径规划算法,以实现高效而精准的物品抓取;同时,采用视觉反馈控制算法,实现对抓取过程中的实时调整和精细控制。实验结果表明,色域值实验验证了系统的视觉感知准确性,动态抓取精度测试和响应速度测试均证实了系统的高效性和稳定性。通过本研究,得出所设计的基于视觉协同的双机械臂物品动态抓取系统在实现精准抓取和高效响应速度方面取得了显著成果,为工业自动化领域的应用提供了有力支持。
The purpose of this paper is to design and implement a dual robotic arm item dynamic grasping system based on visual collaboration, using depth cameras and ordinary cameras to realize visual perception of the target item. The system is built to realize spatial coordinate conversion, which converts pixel coordinates to spatial coordinates to provide accurate position information for subsequent dynamic grasping path planning. In terms of visual collaborative algorithms, a dynamic grasping path planning algorithm is designed to achieve efficient and accurate item grasping; meanwhile, a visual feedback control algorithm is used to realize real-time adjustment and fine control of the grasping process. The experimental results show that the color gamut value experiment verifies the visual perception accuracy of the system, and both the dynamic grasping accuracy test and the response speed test confirm the high efficiency and stability of the system. Through this study, it is concluded that the designed dual robotic arm item dynamic grasping system based on visual synergy has achieved remarkable results in realizing accurate grasping and efficient response speed, which provides strong support for applications in industrial automation.
[1] | 王校峰, 王建文, 曹鹏勇, 等. 机器视觉主导的机械臂动态抓取策略研究[J]. 机床与液压, 2022, 50(17): 38-42. |
[2] | 叶子涵, 陈俊洪, 杨振国, 等. 基于视觉和动态运动基元的机械臂抓取轨迹规划[J]. 机器人技术及应用, 2020(3): 31-36. |
[3] | 王清珍, 张珊, 陈浩. 基于云的多自主移动机器人编队控制实现[J]. 微处理机, 2021, 42(3): 44-47. |
[4] | 李勇, 张朝兴, 柴燎宁. 基于人工势场DDPG算法的移动机械臂协同避障轨迹规划[J]. 计算机集成制造系统, 2023(9): 1-15. |
[5] | Fang, M., Sun, F. and Liu, M. (2019) Adaptive Grasp Planning for Robotic Manipulators in Cluttered Environments. IEEE Transactions on Automation Science and Engineering, 16, 695-706. |
[6] | 吕丞干, 陈海军, 樊虹岐, 等. 基于去端部署的多机器人视觉协同工作系统[J]. 组合机床与自动化加工技术, 2023(12): 50-55. |
[7] | Zhang, T., Stork, J.A. and Billard, A. (2018) Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation. IEEE Robotics and Automation Letters, 3, 3653-3660. |