全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ADAR1和HMGA2在甲状腺乳头状癌中的表达及临床意义分析
Expression and Clinical Significance of ADAR1 and HMGA2 in Papillary Thyroid Carcinoma

DOI: 10.12677/acm.2024.1461797, PP. 467-478

Keywords: ADAR1,HMGA2,甲状腺乳头状癌,免疫组化,临床特征
ADAR1
, HMGA2, Papillary Thyroid Carcinoma, Immunohistochemical, Clinical Characters

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:研究ADAR1和HMGA2在甲状腺乳头状癌(papillary thyroid carcinoma, PTC)中的表达变化情况,并探究与临床特征的关联。方法:收集2022年6月~2023年3月就诊于青岛大学附属医院行手术切除,经病理确诊为甲状腺乳头状癌患者的癌组织和癌旁组织并收集相关临床资料。应用免疫组化等分子方法检测60对PTC癌组织及癌旁组织中ADAR1和HMGA2的表达情况,并分析探讨二者与临床特征的关联。结果:1) RT-qPCR、Western-blot及免疫组化实验结果均表明在甲状腺乳头状癌组织中ADAR1和HMGA2的表达量明显高于癌旁组织,组间差异具有统计学意义(P < 0.05)。2) PTC中ADAR1和HMGA2的表达增高与有淋巴结转移、较晚期肿瘤分期、肿瘤直径大于1 cm及多病灶多中心有关,与患者年龄、性别无明显关联。3) Spearman相关分析示ADAR1和HMGA2在PTC中的表达呈一定正相关关系(r = 0.437, P = 0.015)。结论:1) ADAR1和HMGA2在PTC组织中的表达上调,表明二者可能为PTC发生发展的促癌因素,表达的上调预示着更高的恶性程度及较差预后。2) ADAR1和HMGA2在PTC发生发展中可能存在协同作用的关系,具体作用机制有待进一步研究。
Objective: To investigate the expression changes of ADAR1 and HMGA2 in Papillary thyroid carcinoma, and explore their relationship with clinical features. Methods: Collected cancerous and para-cancerous tissues of patients diagnosed with papillary thyroid carcinoma after surgical resection in Affiliated Hospital of Qingdao University from June 2022 to March 2023 and related clinical data were collected. Immunohistochemical methods were used to detect the expression of ADAR1 and HMGA2 in 60 pairs of PTC cancer tissues and adjacent tissues, and to analyze the relationship between them and clinical features. Results: 1) The results of RT-qPCR, Western-blot and immunohistochemistry showed that the expression levels of ADAR1 and HMGA2 in papillary thyroid carcinoma tissues were significantly higher than those in adjacent tissues, and the differences between groups were statistically significant (P < 0.05). 2) The increased expression of ADAR1 and HMGA2 in PTC is associated with lymph node metastasis, advanced tumor stage, tumor diameter larger than 1cm, and multiple lesions or multicentricity. There is no significant association with patient age or gender. 3) Spearman correlation analysis showed a positive correlation between ADAR1 and HMGA2 expression in PTC (r = 0.437, P = 0.015). Conclusion: 1) The up-regulated expression of ADAR1 and HMGA2 in PTC tissues indicates that they may be cancer-promoting factors in the occurrence and development of PTC, and the up-regulated expression predicts higher malignant degree and poor prognosis. 2) ADAR1 and HMGA2 may have a synergistic relationship in the occurrence and development of PTC, and the specific mechanism of action needs to be further studied.

References

[1]  Higashino, M., Ayani, Y., Terada, T., et al. (2019) Clinical Features of Poorly Differentiated Thyroid Papillary Carcinoma. Auris Nasus Larynx, 46, 437-442.
https://doi.org/10.1016/j.anl.2018.10.001

[2]  Londero, S.C., Krogdahl, A., Bastholt, L., et al. (2013) Papillary Thyroid Microcarcinoma in Denmark 1996-2008: A National Study of Epidemiology and Clinical Significance. Thyroid, 23, 1159-1164.
https://doi.org/10.1089/thy.2012.0595

[3]  Wang, X., Tan, J., Zheng, W., et al. (2018) A Retrospective Study of the Clinical Features in Papillary Thyroid Microcarcinoma Depending on Age. Nuclear Medicine Communications, 39, 713-719.
https://doi.org/10.1097/MNM.0000000000000859

[4]  Haddad, R.I., Nasr, C., Bischoff, L., et al. (2018) NCCN Guidelines Insights: Thyroid Carcinoma, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 1429-1440.
https://doi.org/10.6004/jnccn.2018.0089

[5]  王得力, 张文伟, 秦作荣, 等. 接头蛋白Gab1和酪氨酸磷酸酶SHP2在50例甲状腺乳头状癌中的表达及临床意义分析[J]. 肿瘤学杂志, 2022, 28(5): 389-395.
[6]  Ze, Y., Zhang, X., Shao, F., Zhu, L., Shen, S., Zhu, D., et al. (2019) Active Surveillance of Low-Risk Papillary Thyroid Carcinoma: A Promising Strategy Requiring Additional Evidence. Journal of Cancer Research and Clinical Oncology, 145, 2751-2759.
https://doi.org/10.1007/s00432-019-03021-y

[7]  Wang, J.R., Zafereo, M.E., Wang, W., Joshu, C. and Ray, D. (2023) Association of Polygenic Score with Tumor Molecular Subtypes in Papillary Thyroid Carcinoma. The Journal of Clinical Endocrinology & Metabolism, 109, e306-e313.
https://doi.org/10.1210/clinem/dgad407

[8]  Lam, A.K. and Lee, K.T. (2022) Application of Immunohistochemistry in Papillary Thyroid Carcinoma. Methods in Molecular Biology, 2534, 175-195.
[9]  Gong, Y., Wu, W., Zou, X., et al. (2018) MiR-26a Inhibits Thyroid Cancer Cell Proliferation by Targeting ARPP19. American Journal of Cancer Research, 8, 1030-1039.
[10]  Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article 109858.
https://doi.org/10.1016/j.celrep.2021.109858

[11]  Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., et al. (2013) Recoding RNA Editing of AZIN1 Predisposes to Hepatocellular Carcinoma. Nature Medicine, 19, 209-216.
https://doi.org/10.1038/nm.3043

[12]  Qin, Y., Qiao, J., Chan, T.H.M., Zhu, Y., Li, F., Liu, H., et al. (2014) Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma. Cancer Research, 74, 840-851.
https://doi.org/10.1158/0008-5472.can-13-2545

[13]  Dou, N., Yu, S., Ye, X., Yang, D., Li, Y. and Gao, Y. (2016) Aberrant Overexpression of ADAR1 Promotes Gastric Cancer Progression by Activating mTOR/p70S6K Signaling. Oncotarget, 7, 86161-86173.
https://doi.org/10.18632/oncotarget.13354

[14]  Amin, E.M., Liu, Y., Deng, S., Tan, K.S., Chudgar, N., Mayo, M.W., et al. (2017) The RNA-Editing Enzyme ADAR Promotes Lung Adenocarcinoma Migration and Invasion by Stabilizing FAK. Science Signaling, 10, eaah3941.
https://doi.org/10.1126/scisignal.aah3941

[15]  Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian, L., Chun, H., et al. (2016) ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell, 19, 177-191.
https://doi.org/10.1016/j.stem.2016.05.004

[16]  Fritzell, K., Xu, L., Lagergren, J. and ?hman, M. (2018) ADARs and Editing: the Role of A-to-I RNA Modification in Cancer Progression. Seminars in Cell & Developmental Biology, 79, 123-130.
https://doi.org/10.1016/j.semcdb.2017.11.018

[17]  Colombo, D.F., Burger, L., Baubec, T. and Schübeler, D. (2017) Binding of High Mobility Group a Proteins to the Mammalian Genome Occurs as a Function of AT-Content. PLOS Genetics, 13, e1007102.
https://doi.org/10.1371/journal.pgen.1007102

[18]  Wu, J., Zhang, S., Shan, J., Hu, Z., Liu, X., Chen, L., et al. (2016) Elevated HMGA2 Expression Is Associated with Cancer Aggressiveness and Predicts Poor Outcome in Breast Cancer. Cancer Letters, 376, 284-292.
https://doi.org/10.1016/j.canlet.2016.04.005

[19]  Mansoori, B., Mohammadi, A., Ditzel, H.J., Duijf, P.H.G., Khaze, V., Gjerstorff, M.F., et al. (2021) HMGA2 as a Critical Regulator in Cancer Development. Genes, 12, Article 269.
https://doi.org/10.3390/genes12020269

[20]  Sun, J., Sun, B., Zhu, D., et al. (2017) HMGA2 Regulates CD44 Expression to Promote Gastric Cancer Cell Motility and Sphere Formation. American Journal of Cancer Research, 7, 260-274.
[21]  Li, Y., Wu, D., Wang, P., Li, X. and Shi, G. (2017) miR-195 Regulates Proliferation and Apoptosis through Inhibiting the mTOR/p70S6K Signaling Pathway by Targeting HMGA2 in Esophageal Carcinoma Cells. Disease Markers, 2017, Article 8317913.
https://doi.org/10.1155/2017/8317913

[22]  Zhao, Y., Jiao, Y., Li, Y., Fu, Z., Yang, Z. and He, M. (2019) Elevated High Mobility Group A2 Expression in Liver Cancer Predicts Poor Patient Survival. Revista Espa?ola de Enfermedades Digestivas, 112, 27-33.
https://doi.org/10.17235/reed.2019.6365/2019

[23]  Ou, W., Lv, J., Zou, X., Yao, Y., Wu, J., Yang, J., et al. (2017) Propofol Inhibits Hepatocellular Carcinoma Growth and Invasion through the HMGA2-Mediated Wnt/β-Catenin Pathway. Experimental and Therapeutic Medicine, 13, 2501-2506.
https://doi.org/10.3892/etm.2017.4253

[24]  Wu, J., Liu, Z., Shao, C., Gong, Y., Hernando, E., Lee, P., et al. (2011) HMGA2 Overexpression-Induced Ovarian Surface Epithelial Transformation Is Mediated through Regulation of EMT Genes. Cancer Research, 71, 349-359.
https://doi.org/10.1158/0008-5472.can-10-2550

[25]  Wang, L., Shen, H., Zhu, D., Feng, B., Yu, L., Tian, X., et al. (2018) Increased High Mobility Group a 2 Expression Promotes Transition of Cervical Intraepithelial Neoplasm into Cervical Cancer. Oncotarget, 9, 7891-7901.
https://doi.org/10.18632/oncotarget.24080

[26]  Guo, X., Shi, J., Wen, Y., Li, M., Li, Q., Li, X., et al. (2018) Increased High-Mobility Group A2 Correlates with Lymph Node Metastasis and Prognosis of Non-Small Cell Lung Cancer. Cancer Biomarkers, 21, 547-555.
https://doi.org/10.3233/cbm-170401

[27]  Li, W., Li, G., Liu, Z., Chen, Z. and Pu, R. (2021) LncRNA LINC00355 Promotes EMT and Metastasis of Bladder Cancer Cells through the miR-424-5p/HMGA2 Axis. Neoplasma, 68, 1225-1235.
https://doi.org/10.4149/neo_2021_210427n574

[28]  Marquis, M., Beaubois, C., Lavallée, V., Abrahamowicz, M., Danieli, C., Lemieux, S., et al. (2018) High Expression of HMGA2 Independently Predicts Poor Clinical Outcomes in Acute Myeloid Leukemia. Blood Cancer Journal, 8, Article No. 68.
https://doi.org/10.1038/s41408-018-0103-6

[29]  Zhang, S., Zhang, H. and Yu, L. (2018) HMGA2 Promotes Glioma Invasion and Poor Prognosis via a Long-Range Chromatin Interaction. Cancer Medicine, 7, 3226-3239.
https://doi.org/10.1002/cam4.1534

[30]  Nishikura, K. (2015) A-to-I Editing of Coding and Non-Coding RNAs by ADARs. Nature Reviews Molecular Cell Biology, 17, 83-96.
https://doi.org/10.1038/nrm.2015.4

[31]  Hashemi, M., Rashidi, M., Hushmandi, K., ten Hagen, T.L.M., Salimimoghadam, S., Taheriazam, A., et al. (2023) HMGA2 Regulation by miRNAs in Cancer: Affecting Cancer Hallmarks and Therapy Response. Pharmacological Research, 190, Article 106732.
https://doi.org/10.1016/j.phrs.2023.106732

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133