全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同助航灯光情境下飞行员认知负荷识别研究
Research on Recognition of Pilots’ Mental Workload under Different Navigational Lighting Scenarios

DOI: 10.12677/jast.2024.122011, PP. 88-95

Keywords: 飞行安全,认知负荷,助航灯光,机器学习
Flight Safety
, Mental Workload, Navigational Lights, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

该研究探讨了不同助航灯光情境下飞行员认知负荷的识别方法。助航灯光是飞机在夜间和复杂气象进场着陆中的重要视觉辅助工具,其失效会增加飞行员的认知负荷,影响飞行安全。本研究采用模拟机实验,设计了助航灯光完好和失效两种情况下的夜航进近着陆任务,使用便携式心电设备和NASA-TLX量表,采集了被试飞行员的PPG信号和主观负荷评分,分析了助航灯光失效对飞行员认知负荷的影响。通过提取PPG信号的HRV特征,并对比多种机器学习算法,构建了对飞行员认知负荷能有效分类的模型。结果表明,助航灯光失效显著增加了飞行员的主观认知负荷。KNN模型在识别飞行员认知负荷方面表现出最高的准确性,达70.23%。本研究的结果强调了助航灯光对保障飞行安全的重要性,研究为飞行安全管理提供了重要数据和有效工具。
This study investigates methods for identifying pilots’ mental workload under different navigational lighting scenarios. Navigational lights serve as crucial visual aids for aircraft landing during night flights and complex weather conditions, with their failure increasing pilots’ mental workload and impacting flight safety. Through simulator experiments, this research designed tasks for night approach landings with both operational and failed navigational lights, collecting pilots’ PPG signals and subjective workload scores using portable electrocardiogram devices and the NASA-TLX scale to analyze the impact of navigational light failure on pilots’ mental workload. By extracting HRV features from the PPG signals and comparing various machine learning algorithms, an effective model for classifying pilots’ mental workload was constructed. The results demonstrated that the failure of navigational lights significantly increased pilots’ subjective mental workload. The KNN model exhibited the highest accuracy in identifying pilots’ mental workload, reaching 70.23%. The findings underscore the importance of navigational lights in ensuring flight safety, providing critical data and effective tools for flight safety management.

References

[1]  刘宏超. 通用机场助航灯光及机坪助航设备设计[J]. 光源与照明, 2023(8): 30-32.
[2]  Young, M.S., Brookhuis, K.A., Wickens, C.D. and Hancock, P.A. (2014) State of Science: Mental Workload in Ergonomics. Ergonomics, 58, 1-17.
https://doi.org/10.1080/00140139.2014.956151
[3]  Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X. and Zhang, T. (2019) A Systematic Review of Physiological Measures of Mental Workload. International Journal of Environmental Research and Public Health, 16, Article 2716.
https://doi.org/10.3390/ijerph16152716
[4]  Rubio, S., Díaz, E., Martín, J. and Puente, J.M. (2003) Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods. Applied Psychology, 53, 61-86.
https://doi.org/10.1111/j.1464-0597.2004.00161.x
[5]  卫宗敏, 郝红勋, 徐其志, 等. 飞行员脑力负荷测量指标和评价方法研究进展[J]. 科学技术与工程, 2019, 19(24): 1-8.
[6]  刘承平, 肖旭, 赵竞全. 基于认知过程的飞行员脑力负荷动态预测[J]. 北京航空航天大学学报, 2023, 49(11): 2921-2928.
[7]  汪磊, 张之洋, 邵铿睿, 等. 模拟SPO情境中的飞行员脑力负荷测量与分析[J]. 中国安全生产科学技术, 2022, 18(12): 26-32.
[8]  汪磊, 王朔, 邹颖, 等. 基于任务情境的航线飞行员脑力负荷特征研究[J]. 安全与环境学报, 2023, 23(4): 1202-1208.
[9]  Tiwari, A., Cassani, R., Gagnon, J., Lafond, D., Tremblay, S. and Falk, T.H. (2020) Prediction of Stress and Mental Workload during Police Academy Training Using Ultra-Short-Term Heart Rate Variability and Breathing Analysis. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, 20-24 July 2020, 4530-4533.
https://doi.org/10.1109/embc44109.2020.9175414
[10]  Gilgen-Ammann, R., Schweizer, T. and Wyss, T. (2019) RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. European Journal of Applied Physiology, 119, 1525-1532.
https://doi.org/10.1007/s00421-019-04142-5
[11]  Mohanavelu, K., Poonguzhali, S., Ravi, D., et al. (2020) Cognitive Workload Analysis of Fighter Aircraft Pilots in Flight Simulator Environment. Defence Science Journal, 70, 131-139.
https://doi.org/10.14429/dsj.70.14539
[12]  Li, S., Yang, Q., Wu, P., et al. (2023) Heart Rate Variability Parameters Were Not Associated with 30-Day All-Cause Mortality in Intensive Care Unit Patients with or without Atrial Fibrillation: A Retrospective Study of the MIMIC-IV Database. Shock, 60, 24-33.
https://doi.org/10.1097/SHK.0000000000002149
[13]  王煜文, 王盛, 韩明秀, 等. 基于机器学习的飞行员脑力负荷评估研究进展[J]. 载人航天, 2021, 27(6): 789-796.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133