全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非光滑结构对水下航行器压差阻力的影响
The Research of the Drag Reduction of Non-Smooth Underwater Vehicle

DOI: 10.12677/ijfd.2024.121001, PP. 1-9

Keywords: 水下航行器,非光滑,CFD,减阻
Underwater
, Non-Smooth, CFD, Drag Reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

覆盖非光滑表面是降低水下航行器阻力最直接、最有效的办法,本文对水下航行器的压差阻力进行了研究,将吸附性非光滑结构和导流性非光滑结构分别安装在航行器的流固分离处,采用流体动力学仿真的方法研究两类非光滑结构对流体尾部流场的影响,研究表明,在航行器流固分离位置覆盖吸附性非光滑结构能够延迟流固分离,有效降低航行器压差阻力。
Covered the surface of underwater vehicle with non-smooth surface is the most directly and most effective method, the writer studied the pressure drag of underwater vehicle, put the diversion structure and adsorption structure on the fluid-solid separation phase, use the CFD method to study the effect of non-smooth surface to the tail of underwater vehicle. Results show that put the adsorption structure on the fluid-solid separation phase can reduce the pressure drag of underwater vehicle.

References

[1]  张效慈. 潜器的随行波减阻降噪贴敷层[J]. 船舶力学, 2021, 5(2): 1-3.
[2]  Zhang, D., Luo, Y., Li, X. and Chen, H. (2011) Numerical Simulation and Experimental Study of Drag-Reducing Surface of a Real Shark Skin. Journal of Hydrodynamics, 23, 204-211.
https://doi.org/10.1016/s1001-6058(10)60105-9
[3]  Bechert, D.W., Bruse, M. and Hage, W. (2000) Experiments with Three-Dimensional Riblets as an Idealized Model of Shark Skin. Experiments in Fluids, 28, 403-412.
https://doi.org/10.1007/s003480050400
[4]  张成春. 旋成体仿生非光滑表面流场控制流场控制减阻研究[D]: [博士学位论文]. 长春: 吉林大学, 2017.
[5]  侯昌辉. 减阻力学[M]. 北京: 科学出版社, 2017.
[6]  Pal, S., Merkle, C.L. and Deutsch, S. (1988) Bubble Characteristics and Trajectories in a Microbubble Boundary Layer. The Physics of Fluids, 31, 744-751.
https://doi.org/10.1063/1.866810
[7]  Madavan, N.K., Deutsch, S. and Merkle, C.L. (1984) Reduction of Turbulent Skin Friction by Microbubbles. The Physics of Fluids, 27, 356-363.
https://doi.org/10.1063/1.864620
[8]  李天然. 仿生减阻表面的数值研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2021.
[9]  Leitzke, J.P., Della Mea, A., Faller, L.M., et al. (2018) Wireless Differential Pressure Measurement for Aircraft. Measurement, 122, 459-465.
[10]  陈瑞芳, 江志东, 吴嘉. 高分子减阻流场湍流结构实验研究[J]. 大连理工大学学报, 1998(5): 33-36.
[11]  沙辉. 随行波表面水下减阻降噪的理论及实验研究[D]: [硕士学位论文]. 西安: 西北工业大学, 2022.
[12]  王国华, 姜楠.周期性扰动对平板湍流边界层统计性质的影响[J]. 航空动力学报. 2017, 22(9): 1505-1511.
[13]  陈强, 唐登斌, 曹起鹏. 湍流大涡破碎装置的减阻研究[J]. 弹道学报, 2021, 13(4): 28-33.
[14]  Bushnell, D.M., Hefiner, J.N. and Ash, R.L. (2017) Effect of Compliant Wall Motion on Turbulent Boundary Layers. Special Course on Concepts for Drag Reduction, 9, 152-160.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133