全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多波长泵浦传导冷却激光器的宽温稳定输出
Wide Temperature Stable Output of a Multi-Wavelength Pumped Conductively Cooled Laser

DOI: 10.12677/app.2024.146043, PP. 390-396

Keywords: 多波长泵浦,全固态激光器,传导冷却
Multi-Wavelength Pump
, DPL, Conductively Cooled

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用多波长bar条模块,有效的抑制了温度漂移对激光输出稳定性的影响,控制晶体的热效应。通过一体化热沉结构设计,改善激光器温控系统控温压力,减少冷却传导系统体积、重量。设计了LD阵列泵浦源、泵浦结构以及传导冷却方式,实现全固态激光器的无水冷稳定输出。激光器重复频率10 Hz,在控温30℃时连续工作时间3 min,获得平均脉冲能量17.03 mJ,最大脉冲能量17.5 mJ,能量不稳定度3.13%,可在10℃~40℃范围内稳定输出。
In this study, a multi-wavelength bar module is used to effectively suppress the influence of temperature drift on the laser output stability and control the thermal effect of the crystal. Through the integrated heat sink structure design, the temperature control pressure of the laser temperature control system is improved, and the volume and weight of the cooling conduction system are reduced. The LD array pump source, pump structure and conduction cooling mode are designed to realize the stable output of all solid-state laser without water cooling. The repetition rate of the laser is 10 Hz, the continuous working time is 3 min when the temperature is controlled at 30?C, the average pulse energy is 17.0 mJ, the maximum pulse energy is 17.5 mJ, and the energy instability is 3.13%. The laser can be stably output in the range of 10?C~40?C, which can meet the applicable test of various platforms.

References

[1]  Shang, P., Bai, L., Wang, S., Cai, D. and Li, B. (2023) Research Progress on Thermal Effect of LD Pumped Solid State Laser. Optics & Laser Technology, 157, 108640.
https://doi.org/10.1016/j.optlastec.2022.108640
[2]  Tang, C., Gao, Q., Chai, Z., Wu, D., Tong, L., Gao, S., et al. (2004). 1-J 500-Hz MOPA Solid State Laser Pumped by Diodes. Solid State Lasers and Amplifiers, Strasbourg, 26-30 April 2004, 26-30.
https://doi.org/10.1117/12.554288
[3]  Nieuwsma, D.E. and Wang, J. (2005). Design of an Advanced Diode-Pumped Solid State Laser for High-Altitude Airborne Operations. SPIE Proceedings, Honolulu, 8-12 November 2004, 8-12.
https://doi.org/10.1117/12.580348
[4]  凌铭, 武志超, 谭雪春, 等. LD侧面泵浦Nd:YAG无水冷调Q脉冲激光器[J]. 红外与激光工程, 2007(S1): 20-23.
https://doi.org/10.3969/j.issn.1007-2276.2007.z1.082
[5]  Liu, Q., Liu, J. and Gong, M. (2011) Dual-Rod, 100 Hz, 388 mJ Nanosecond Nd:YAG Oscillator. Applied Optics, 50, Article 1186.
https://doi.org/10.1364/ao.50.001186
[6]  Evangelatos, C., Bakopoulos, P., Tsaknakis, G., Papadopoulos, D., Avdikos, G., Papayannis, A., et al. (2013) Continuous Wave and Passively Q-Switched Nd:YAG Laser with a Multisegmented Crystal Diode-Pumped at 885 Nm. Applied Optics, 52, Article 8795.
https://doi.org/10.1364/ao.52.008795
[7]  Yang, Q., Ma, J., Lu, T., Ma, X. and Zhu, X. (2015). 160mj and 9ns Electro-Optics Q-Switched Conductively Cooled 1047nm Nd:YLF Laser. SPIE Proceedings, Chengdu, 25-29 August 2014, 25-29.
https://doi.org/10.1117/12.2064316
[8]  Qiu, J.S., Tang, X.X., Fan, Z.W., Wang, H.C. and Liu, H. (2016) Two-beam Combined 336 J, 100 Hz Diode-Pumped High Beam Quality Nd:YAG Laser System. Applied Optics, 55, Article 5630.
https://doi.org/10.1364/ao.55.005630
[9]  Sato, A., Aoki, M., Ishii, S., Otsuka, R., Mizutani, K. and Ochiai, S. (2017) 7.28-W, High-Energy, Conductively Cooled, Q-Switched Tm, Ho:YLF Laser. IEEE Photonics Technology Letters, 29, 134-137.
https://doi.org/10.1109/lpt.2016.2629763
[10]  Li, C., Lu, C., Li, C., Zang, Y., Yang, Z., Han, S., et al. (2017) Compact Conductively Cooled Electro-Optical Q-Switched Nd:YAG Laser. Optical Engineering, 56, Article 1.
https://doi.org/10.1117/1.oe.56.11.116115
[11]  李刚, 卜英华, 李龙骧, 等. 百赫兹百毫焦全固态纳秒激光器技术研究[J]. 应用光学, 2022, 43(4): 803-808.
https://doi.org/10.5768/JAO202243.0407003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133