全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

OCT评估超声介导下表皮真皮层的光学参数变化规律的研究
Study on the Variation of Optical Parameters of Ultrasound-Mediated Epidermal Dermis Evaluated by OCT

DOI: 10.12677/app.2024.146041, PP. 371-381

Keywords: 图像处理,光学相干层析技术,光学透明剂,超声波促渗
Image Processing
, Optical Coherence Tomography, Optical Clearing Agents, Sonophoresis

Full-Text   Cite this paper   Add to My Lib

Abstract:

皮肤是光学成像诊断的主要靶器官之一,但皮肤组织的高散射特性限制了光学相干层析成像技术(OCT)的成像深度和扫描精度。利用高频超声结合光学透明剂对离体皮肤组织进行实时处理,协同光学透明剂进入生物组织。实验对比两种处理模式下的离体皮肤的OCT的相关参数的变化。PVP粘性改良80%PEG-400/PEG-200结合频率为1 MHz、功率1 W/cm2的高频超声处理离体皮肤组织后,真皮层散射系数在60分钟内降低0.27,与对照组相比,同比增加了3.3倍。证明高频超声能够有效改善OCAs的皮肤组织光学清除效率,提升OCT光学成像效果。
Skin is one of the main target organs for optical imaging diagnosis, but the high scattering properties of skin tissue limit the imaging depth and scanning accuracy of optical coherence tomography (OCT). Real-time processing of isolated skin tissues using high-frequency ultrasound combined with optical hyaluronics synergizes optical hyaluronics into biological tissues to improve the optical clearance of skin tissues. The changes in the relevant parameters of OCT of isolated skin in the two treatment modes were compared in the experiment. The dermal scattering coefficient decreased by 0.27 within 60 minutes after PVP viscosity-modified 80% PEG-400/PEG-200 combined with high-frequency ultrasound at a frequency of 1 MHz and a power of 1 W/cm2 was used for the treatment of isolated skin tissues. This is a year-on-year increase of 3.3-fold when compared with that of the control group. This result demonstrates that high-frequency ultrasound can effectively improve the optical removal efficiency of skin tissues with OCAs and enhance OCT optical imaging.

References

[1]  朱越, 高万荣. 全场高分辨生物组织光学层析成像[J]. 中国激光, 2014, 41(8): 114-121.
[2]  Olsen, J., Holmes, J. and Jemec, G.B.E. (2018) Advances in Optical Coherence Tomography in Dermatology—A Review. Journal of Biomedical Optics, 23, Article ID: 040901.
https://doi.org/10.1117/1.jbo.23.4.040901
[3]  Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., et al. (1991) Optical Coherence Tomography. Science, 254, 1178-1181.
https://doi.org/10.1126/science.1957169
[4]  Dias-Moraes, M.C., Castro, P.A.A., Pereira, D.L., Ana, P.A., Freitas, A.Z. and Zezell, D.M. (2021) Assessment of the Preventive Effects of Nd: YAG Laser Associated with Fluoride on Enamel Caries Using Optical Coherence Tomography and FTIR Spectroscopy. PLOS ONE, 16, e0254217.
https://doi.org/10.1371/journal.pone.0254217
[5]  Bashkatov, A.N., Berezin, K.V., Dvoretskiy, K.N., Chernavina, M.L., Genina, E.A., Genin, V.D., et al. (2018) Measurement of Tissue Optical Properties in the Context of Tissue Optical Clearing. Journal of Biomedical Optics, 23, Article ID: 091416.
https://doi.org/10.1117/1.jbo.23.9.091416
[6]  Otuya, D.O., Dechene, N.M., Poshtupaka, D., Judson, S., Carlson, C.J., Zemlok, S.K., et al. (2022) Passively Scanned, Single‐Fiber Optical Coherence Tomography Probes for Gastrointestinal Devices. Lasers in Surgery and Medicine, 54, 935-944.
https://doi.org/10.1002/lsm.23576
[7]  Xu, W., Wang, Y., Huang, H., Wu, J., Che, Y., Ding, C., et al. (2022) Octreotide-Based Therapies Effectively Protect Mice from Acute and Chronic Gastritis. European Journal of Pharmacology, 928, 174976.
https://doi.org/10.1016/j.ejphar.2022.174976
[8]  Assayag, O., Grieve, K., Devaux, B., Harms, F., Pallud, J., Chretien, F., et al. (2013) Imaging of Non-Tumorous and Tumorous Human Brain Tissues with Full-Field Optical Coherence Tomography. NeuroImage: Clinical, 2, 549-557.
https://doi.org/10.1016/j.nicl.2013.04.005
[9]  Kakizaki, S., Otake, H., Seike, F., Kawamori, H., Toba, T., Nakano, S., et al. (2022) Optical Coherence Tomography Fractional Flow Reserve and Cardiovascular Outcomes in Patients with Acute Coronary Syndrome. JACC: Cardiovascular Interventions, 15, 2035-2048.
https://doi.org/10.1016/j.jcin.2022.08.010
[10]  姚文涛, 高万荣. 内窥光学层析成像的发展和应用[J]. 激光与光电子学进展, 2018, 55(7): 20-33.
[11]  Yu, T., Zhu, J., Li, D. and Zhu, D. (2021) Physical and Chemical Mechanisms of Tissue Optical Clearing. iScience, 24, Article ID: 102178.
https://doi.org/10.1016/j.isci.2021.102178
[12]  Tuchin, V.V. (2005) Optical Clearing of Tissues and Blood Using the Immersion Method. Journal of Physics D: Applied Physics, 38, 2497-2518.
https://doi.org/10.1088/0022-3727/38/15/001
[13]  Genina, E.A., Bashkatov, A.N., Kolesnikova, E.A., Basko, M.V., Terentyuk, G.S. and Tuchin, V.V. (2013) Optical Coherence Tomography Monitoring of Enhanced Skin Optical Clearing in Rats in Vivo. Journal of Biomedical Optics, 19, Article ID: 021109.
https://doi.org/10.1117/1.jbo.19.2.021109
[14]  Wen, X., Mao, Z., Han, Z., Tuchin, V.V. and Zhu, D. (2009) In Vivo Skin Optical Clearing by Glycerol Solutions: Mechanism. Journal of Biophotonics, 3, 44-52.
https://doi.org/10.1002/jbio.200910080
[15]  Shi, R., Feng, W., Zhang, C., Zhang, Z. and Zhu, D. (2017) Fsoca‐induced Switchable Footpad Skin Optical Clearing Window for Blood Flow and Cell Imaging in Vivo. Journal of Biophotonics, 10, 1647-1656.
https://doi.org/10.1002/jbio.201700052
[16]  Jiang, J. and Wang, R.K. (2004) Comparing the Synergistic Effects of Oleic Acid and Dimethyl Sulfoxide as Vehicles for Optical Clearing of Skin Tissue in Vitro. Physics in Medicine and Biology, 49, 5283-5294.
https://doi.org/10.1088/0031-9155/49/23/006
[17]  Zhao, Q., Dai, C., Fan, S., Lv, J. and Nie, L. (2016) Synergistic Efficacy of Salicylic Acid with a Penetration Enhancer on Human Skin Monitored by OCT and Diffuse Reflectance Spectroscopy. Scientific Reports, 6, Article No. 34954.
https://doi.org/10.1038/srep34954
[18]  Nguyen, H.X. and Banga, A.K. (2018) Electrically and Ultrasonically Enhanced Transdermal Delivery of Methotrexate. Pharmaceutics, 10, Article 117.
https://doi.org/10.3390/pharmaceutics10030117
[19]  Liu, K., Green, C.R., Alany, R.G. and Rupenthal, I.D. (2013) Synergistic Effect of Chemical Penetration Enhancer and Iontophoresis on Transappendageal Transport of Oligodeoxynucleotides. International Journal of Pharmaceutics, 441, 687-692.
https://doi.org/10.1016/j.ijpharm.2012.10.027
[20]  Park, J., Lee, H., Lim, G., Kim, N., Kim, D. and Kim, Y. (2019) Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis. AAPS PharmSciTech, 20, Article No. 96.
https://doi.org/10.1208/s12249-019-1309-z
[21]  Zhao, J., Wu, Y., Chen, J., Lu, B., Xiong, H., Tang, Z., et al. (2018) In Vivo Monitoring of Microneedle-Based Transdermal Drug Delivery of Insulin. Journal of Innovative Optical Health Sciences, 11, Article ID: 1850032.
https://doi.org/10.1142/s1793545818500323
[22]  Wong, T.W. (2014) Electrical, Magnetic, Photomechanical and Cavitational Waves to Overcome Skin Barrier for Transdermal Drug Delivery. Journal of Controlled Release, 193, 257-269.
https://doi.org/10.1016/j.jconrel.2014.04.045
[23]  Fu, X., Wang, Z., Wang, H., Wang, Y.T., Jenkins, M.W. and Rollins, A.M. (2014) Fiber-Optic Catheter-Based Polarization-Sensitive OCT for Radio-Frequency Ablation Monitoring. Optics Letters, 39, 5066-5069.
https://doi.org/10.1364/ol.39.005066
[24]  Xu, X.Q. and Zhu, Q.H. (2008) Feasibility of Sonophoretic Delivery for Effective Skin Optical Clearing. IEEE Transactions on Biomedical Engineering, 55, 1432-1437.
https://doi.org/10.1109/tbme.2007.912416
[25]  Novoselova, M.V., Abakumova, T.O., Khlebtsov, B.N., Zatsepin, T.S., Lazareva, E.N., Tuchin, V.V., et al. (2020) Optical Clearing for Photoacoustic Lympho-And Angiography Beyond Conventional Depth Limit in Vivo. Photoacoustics, 20, Article ID: 100186.
https://doi.org/10.1016/j.pacs.2020.100186
[26]  Zhang, D., Chen, B., Mu, Q., Wang, W., Liang, K., Wang, L., et al. (2021) Topical Delivery of Gambogic Acid Assisted by the Combination of Low-Frequency Ultrasound and Chemical Enhancers for Chemotherapy of Cutaneous Melanoma. European Journal of Pharmaceutical Sciences, 166, Article ID: 105975.
https://doi.org/10.1016/j.ejps.2021.105975
[27]  Polat, B.E., Hart, D., Langer, R. and Blankschtein, D. (2011) Ultrasound-mediated Transdermal Drug Delivery: Mechanisms, Scope, and Emerging Trends. Journal of Controlled Release, 152, 330-348.
https://doi.org/10.1016/j.jconrel.2011.01.006
[28]  Alvarez‐Román, R., Merino, G., Kalia, Y.N., Naik, A. and Guy, R.H. (2003) Skin Permeability Enhancement by Low Frequency Sonophoresis: Lipid Extraction and Transport Pathways. Journal of Pharmaceutical Sciences, 92, 1138-1146.
https://doi.org/10.1002/jps.10370
[29]  Liu, H., Abbasi, M., Ding, Y.H., Polley, E.C., Fitzgerald, S., Kadirvel, R., et al. (2020) Characterizing Thrombus with Multiple Red Blood Cell Compositions by Optical Coherence Tomography Attenuation Coefficient. Journal of Biophotonics, 14, e202000364.
https://doi.org/10.1002/jbio.202000364
[30]  Merino, G., Kalia, Y.N., Delgado-Charro, M.B., Potts, R.O. and Guy, R.H. (2003) Frequency and Thermal Effects on the Enhancement of Transdermal Transport by Sonophoresis. Journal of Controlled Release, 88, 85-94.
https://doi.org/10.1016/s0168-3659(02)00464-9
[31]  Clennell, B., Steward, T.G.J., Elley, M., Shin, E., Weston, M., Drinkwater, B.W., et al. (2021) Transient Ultrasound Stimulation Has Lasting Effects on Neuronal Excitability. Brain Stimulation, 14, 217-225.
https://doi.org/10.1016/j.brs.2021.01.003
[32]  Shamaprasad, P., Frame, C.O., Moore, T.C., Yang, A., Iacovella, C.R., Bouwstra, J.A., et al. (2022) Using Molecular Simulation to Understand the Skin Barrier. Progress in Lipid Research, 88, Article ID: 101184.
https://doi.org/10.1016/j.plipres.2022.101184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133