全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

miR-30e-5p靶向BIM调控缺氧诱导细胞凋亡的应用研究
Application Study of miR-30e-5p Targeted BIM in Regulating Hypoxia-Induced Apoptosis

DOI: 10.12677/acm.2024.1461782, PP. 344-352

Keywords: miR-30e-5p,CA16,抑制缺氧,凋亡
miR-30e-5p
, CA16, Inhibition of Hypoxia, Apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:研究miR-30e-5p与H2O2损伤后心肌细胞凋亡的关系,探讨miR-30e-5p靶向BIM基因调控H2O2损伤后心肌细胞凋亡的作用,为心肌梗死的诊断以及治疗提供新的靶点。方法:将40天CA16分为正常组(N)、缺氧组(H)、过表达对照组(NC+H)、miR-30e-5p过表达组(miR+H)。N组置于正常培养箱下培养;H组置于缺氧培养箱培养24 h;NC+H组与miR+H组分别为稳定感染装载有miR-NC和miR-30e-5p的重组慢病毒后缺氧处理24 h。应用RT-qPCR检测CA16中miR-30e-5p和BIM的mRNA表达水平,应用Caspase-3活性实验和流式细胞技术检测hiPSC-CMs的凋亡水平。利用生物信息学miRNA数据库预测miR-30e-5p的靶基因,并应用双荧光素酶报告基因实验进行验证。结果:1) 与N组比较,H组miR-30e-5p表达水平明显下调;与NC+H组比较,miR+H组miR-30e-5p表达水平则明显上调。2) 与N组比较,H组Caspase-3活性水平明显升高;与NC+H组比较,miR+H组Caspase-3活性水平下降。3) 与N组比较,H组CA16细胞凋亡比例明显上升;与NC+H组比较,miR+H组CA16凋亡比例则明显下降。4) 与N组比较,H组蛋白BIM表达水平上调;与NC+H组比较,miR+H组蛋白BIM表达水平下调。5) 通过miRNA数据库分析发现BIM是miR-30e-5p的潜在靶基因之一。结论:1) miR-30e-5p调控缺氧诱导CA16的凋亡。2) BIM是miR-30e-5p的靶基因之一。3) miR-30e-5p靶向BIM调控缺氧诱导CA16的凋亡。4) miR-30e-5p在急性心肌梗死的发生、发展过程中可能发挥抑癌基因的作用。
Objective: To investigate the relationship between miR-30e-5p and myocardial cell apoptosis after H2O2 injury, and to explore the role of miR-30e-5p targeting BIM genes in regulating myocardial cell apoptosis after H2O2 injury, providing new targets for the diagnosis and treatment of myocardial infarction. Method: The 40 day CA16 was divided into normal group (N), hypoxia group (H), overexpression control group (NC+H), and miR-30e-5p overexpression group (miR+H). Group N was cultured in a normal incubator; Group H was incubated in a hypoxia incubator for 24 hours; The NC+H group and miR+H group were treated with hypoxia for 24 hours after stable infection with recombinant lentivirus loaded with miR-NC and miR-30e-5p, respectively. RT qPCR was used to detect the mRNA expression levels of miR-30e-5p and BIM in CA16, and Caspase-3 activity assay and flow cytometry were used to detect the apoptosis level of hiPSC-CMs. Using bioinformatics miRNA database to predict target genes of miR-30e-5p, and validating with dual luciferase reporter gene experiments. Result: 1) Compared with group N, the expression level of miR-30e-5p in group H was significantly down-regulated; Compared with the NC+H group, the expression level of miR-30E-5p in the miR+H group was significantly up-regulated. 2) Compared with group N, the activity level of Caspase-3 in group H was significantly increased; Compared with NC+H group, the activity level of Caspase-3 in miR+H group was decreased. 3) Compared with group N, the apoptosis ratio of CA16 cells in group H was significantly increased; Compared with NC+H group, the apoptosis ratio of CA16 in miR+H group was significantly decreased. 4) Compared with group N, BIM expression level of histone

References

[1]  Ashiqueali, S.A., Chaudhari, D., Zhu, X., Noureddine, S., Siddiqi, S., Garcia, D.N., et al. (2024) Fisetin Modulates the Gut Microbiota Alongside Biomarkers of Senescence and Inflammation in a Dss-Induced Murine Model of Colitis. GeroScience, 46, 3085-3103.
https://doi.org/10.1007/s11357-024-01060-z
[2]  Dakroub, F., Kobeissy, F., Mondello, S., Yang, Z., Xu, H., Sura, L., et al. (2024) Micrornas as Biomarkers of Brain Injury in Neonatal Encephalopathy: An Observational Cohort Study. Scientific Reports, 14, Article No. 6645.
https://doi.org/10.1038/s41598-024-57166-z
[3]  Escate, R., Padró, T., Pérez de Isla, L., Fuentes, F., Alonso, R., Mata, P., et al. (2024) Circulating miR-6821-5p Levels and Coronary Calcification in Asymptomatic Familial Hypercholesterolemia Patients. Atherosclerosis, 392, Article 117502.
https://doi.org/10.1016/j.atherosclerosis.2024.117502
[4]  Mao, W.P., Zhang, L., Wang, Y.D., Sun, S., Wu, J.P., Sun, J., et al. (2023) Cisplatin Induces Acute Kidney Injury by Downregulating miR-30e-5p That Targets Galnt3 to Activate the AMPK Signaling Pathway. Environmental Toxicology, 39, 1567-1580.
https://doi.org/10.1002/tox.24054
[5]  Ge, Y.W., Hong, M., Zhang, Y., Wang, J.C., Li, L., Zhu, H.K., et al. (2023) miR-30e-5p Regulates Leukemia Stem Cell Self-Renewal through the Cyb561/ROS Signaling Pathway. Haematologica, 109, 411-421.
https://doi.org/10.3324/haematol.2023.282837
[6]  Zheng, L., Chopra, A., Weiner, J., Beule, D., Dommisch, H. and Schaefer, A.S. (2023) miRNAs from Inflamed Gingiva Link Gene Signaling to Increased MET Expression. Journal of Dental Research, 102, 1488-1497.
https://doi.org/10.1177/00220345231197984
[7]  Wu, T., Yang, Z.Y., Chen, W.C., Jiang, M.J., Xiao, Z.C., Su, X., et al. (2023) miR-30e-5P-Mediated FOXD1 Promotes Cell Proliferation by Blocking Cellular Senescence and Apoptosis through p21/CDK2/Rb Signaling in Head and Neck Carcinoma. Cell Death Discovery, 9, Article No. 295.
https://doi.org/10.1038/s41420-023-01571-2
[8]  Pinazo-Durán, M.D., Zanón-Moreno, V., García-Villanueva, C., Martucci, A., Peris-Martínez, C., Vila-Arteaga, J., et al. (2023) Biochemical-molecular-genetic Biomarkers in the Tear Film, Aqueous Humor, and Blood of Primary Open-Angle Glaucoma Patients. Frontiers in Medicine, 10, Article 1157773.
https://doi.org/10.3389/fmed.2023.1157773
[9]  Ingelson-Filpula, W.A., Hadj-Moussa, H. and Storey, K.B. (2023) Microrna Transcriptomics in Liver of the Freeze-Tolerant Gray Tree Frog (Dryophytes versicolor) Indicates Suppression of Energy-Expensive Pathways. Cell Biochemistry and Function, 41, 309-320.
https://doi.org/10.1002/cbf.3783
[10]  Liu, Z.L., Guo, S.W., Yan, D.M., Bai, Y.H., Song, Z.Y. and Liu, X.Z. (2023) Circular RNA circFAT1(e2) Facilitates Cell Progression through the miR-30e-5P/MYBL2 Pathway in Glioma. Disease Markers, 2023, 1-17.
https://doi.org/10.1155/2023/7418365
[11]  Liao, Y., Cai, H., Luo, F., Li, D., Li, H., Liao, G., et al. (2023) Three Nervous System-Specific Expressed Genes Are Potential Biomarkers for the Diagnosis of Sporadic Amyotrophic Lateral Sclerosis through a Bioinformatic Analysis. BMC Medical Genomics, 16, Article No. 15.
https://doi.org/10.1186/s12920-023-01441-x
[12]  Zhang, X., Ma, Y., Zhou, F., Zhang, M., Zhao, D., Wang, X., et al. (2022) Identification of miRNA-mRNA Regulatory Network Associated with the Glutamatergic System in Post-Traumatic Epilepsy Rats. Frontiers in Neurology, 13, Article 1102672.
https://doi.org/10.3389/fneur.2022.1102672
[13]  Ding, Y., Chen, Y., Yang, X., Xu, P., Jing, J., Miao, Y., et al. (2022) An Integrative Analysis of the lncRNA-miRNA-mRNA Competitive Endogenous RNA Network Reveals Potential Mechanisms in the Murine Hair Follicle Cycle. Frontiers in Genetics, 13, Article 931797.
https://doi.org/10.3389/fgene.2022.931797
[14]  Yin, X., Wang, M., Wang, W., Chen, T., Song, G., Niu, Y., et al. (2022) Identification of Potential miRNA-mRNA Regulatory Network Contributing to Parkinson’s Disease. Parkinsons Disease, 2022, Article 2877728.
https://doi.org/10.1155/2022/2877728
[15]  Song, H., Xu, N. and Jin, S. (2022) miR30e5p Attenuates Neuronal Deficit and Inflammation of Rats with Intracerebral Hemorrhage by Regulating TLR4. Experimental and Therapeutic Medicine, 24, Article No. 492.
https://doi.org/10.3892/etm.2022.11419
[16]  Belmonte, T., Perez-Pons, M., Benítez, I.D., Molinero, M., García-Hidalgo, M.C., Rodríguez-Mu?oz, C., et al. (2024) Addressing the Unsolved Challenges in Microrna-Based Biomarker Development: Suitable Endogenous Reference Micrornas for SARS-CoV-2 Infection Severity. International Journal of Biological Macromolecules, 269, Article 131926.
https://doi.org/10.1016/j.ijbiomac.2024.131926
[17]  Mazumder, S., Basu, B., Ray, J.G. and Chatterjee, R. (2023) miRNAs as Non-Invasive Biomarkers in the Serum of Oral Squamous Cell Carcinoma (OSCC) and Oral Potentially Malignant Disorder (OPMD) Patients. Archives of Oral Biology, 147, Article 105627.
https://doi.org/10.1016/j.archoralbio.2023.105627
[18]  Lv, J., Hao, Y.N., Wang, X.P., Lu, W.H., Xie, L.Y. and Niu, D. (2023) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-30e-5p Ameliorates High-Glucose Induced Renal Proximal Tubular Cell Pyroptosis by Inhibiting ELAVL1. Renal Failure, 45, Article 2177082.
https://doi.org/10.1080/0886022X.2023.2177082

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133