|
重症肌无力靶向治疗进展
|
Abstract:
重症肌无力(myasthenia gravis, MG)是一种慢性的、波动的、补体和抗体介导的自身免疫性疾病,针对骨骼肌突触后神经肌肉连接的疾病。临床上主要表现为全身或局部肌肉无力、容易疲劳等症状。乙酰胆碱酯酶和皮质类固醇仍然是一线治疗,静脉注射免疫球蛋白(IVIG)和血浆置换(PE)为急性加重期的推荐疗法,特别是重症肌无力危象。然而,MG的治疗需要长期的免疫抑制,传统药物有多样选择性,但需长时间才能起作用,并有相应的不良反应,大约10%~15%的MG患者对传统疗法无效。过去十年,已经出现了几种新的生物制剂,包括补体抑制剂、新生儿Fc受体(FcRn)抑制剂、B细胞耗竭剂等,它们具有靶向性的免疫治疗,副作用少,起效快等特点。本文就几种生物制剂的疗效、安全性等进行综述。
Myasthenia gravis (MG) is a chronic, fluctuating, complement and antibody mediated autoimmune disease that targets the postsynaptic neuromuscular connections in skeletal muscles. The main clinical manifestations are systemic or local muscle weakness, and easy fatigue. Acetylcholinesterase and corticosteroids remain first-line treatments, while intravenous immunoglobulin (IVIG) and plasma exchange (PE) are recommended therapies for acute exacerbation, especially in the crisis of myasthenia gravis. However, the treatment of MG requires long-term immunosuppression, and traditional drugs have diverse selectivity but require a long time to take effect, with corresponding adverse reactions. About 10%~15% of MG patients are ineffective with traditional therapies. In the past decade, several new biological agents have emerged, including B-cell depleting agents, complement inhibitors, and neonatal Fc receptor (FcRn) inhibitors, which have the characteristics of targeted immunotherapy, low side effects, and fast onset. This article provides a review of the efficacy, safety, and other aspects of several biological agents.
[1] | Lazaridis, K. and Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212. https://doi.org/10.3389/fimmu.2020.00212 |
[2] | Chen, J., Tian, D.-C., Zhang, C., Li, Z., Zhai, Y., Xiu, Y., et al. (2020) Incidence, Mortality, and Economic Burden of Myasthenia Gravis in China: A Nationwide Population-Based Study. The Lancet Regional Health-Western Pacific, 5, Article 100063. https://doi.org/10.1016/j.lanwpc.2020.100063 |
[3] | Huang, X., Li, Y., Feng, H., Chen, P. and Liu, W. (2018) Clinical Characteristics of Juvenile Myasthenia Gravis in Southern China. Frontiers in Neurology, 9, Article 77. https://doi.org/10.3389/fneur.2018.00077 |
[4] | Hong, Y., Skeie, G.O., Zisimopoulou, P., Karagiorgou, K., Tzartos, S.J., Gao, X., et al. (2017) Retracted Article: Juvenile-Onset Myasthenia Gravis: Autoantibody Status, Clinical Characteristics and Genetic Polymorphisms. Journal of Neurology, 264, 955-962. https://doi.org/10.1007/s00415-017-8478-z |
[5] | Vanoli, F. and Mantegazza, R. (2023) Current Drug Treatment of Myasthenia Gravis. Current Opinion in Neurology, 36, 410-415. https://doi.org/10.1097/wco.0000000000001196 |
[6] | Howard Jr., J.F. (2017) Myasthenia Gravis: The Role of Complement at the Neuromuscular Junction. Annals of the New York Academy of Sciences, 1412, 113-128. https://doi.org/10.1111/nyas.13522 |
[7] | Lin, F., Kaminski, H.J., Conti-Fine, B.M., Wang, W., Richmonds, C. and Medof, M.E. (2002) Markedly Enhanced Susceptibility to Experimental Autoimmune Myasthenia Gravis in the Absence of Decay-Accelerating Factor Protection. Journal of Clinical Investigation, 110, 1269-1274. https://doi.org/10.1172/jci0216086 |
[8] | Mantegazza, R., Vanoli, F., Frangiamore, R. and Cavalcante, P. (2020) Complement Inhibition for the Treatment of Myasthenia Gravis. ImmunoTargets and Therapy, 9, 317-331. https://doi.org/10.2147/itt.s261414 |
[9] | Zisimopoulou, P., Evangelakou, P., Tzartos, J., Lazaridis, K., Zouvelou, V., Mantegazza, R., et al. (2014) A Comprehensive Analysis of the Epidemiology and Clinical Characteristics of Anti-LRP4 in Myasthenia Gravis. Journal of Autoimmunity, 52, 139-145. https://doi.org/10.1016/j.jaut.2013.12.004 |
[10] | Klooster, R., Plomp, J.J., Huijbers, M.G., Niks, E.H., Straasheijm, K.R., Detmers, F.J., et al. (2012) Muscle-Specific Kinase Myasthenia Gravis IgG4 Autoantibodies Cause Severe Neuromuscular Junction Dysfunction in Mice. Brain, 135, 1081-1101. https://doi.org/10.1093/brain/aws025 |
[11] | Howard Jr., J.F., Barohn, R.J., Cutter, G.R., Freimer, M., Juel, V.C., Mozaffar, T., et al. (2013) A Randomized, Double-Blind, Placebo-Controlled Phase II Study of Eculizumab in Patients with Refractory Generalized Myasthenia Gravis. Muscle & Nerve, 48, 76-84. https://doi.org/10.1002/mus.23839 |
[12] | Howard Jr., J.F., Utsugisawa, K., Benatar, M., et al. (2017) Safety and Efficacy of Eculizumab in Anti-Acetylcholine Receptor Antibody-Positive Refractory Generalised Myasthenia Gravis (REGAIN): A Phase 3, Randomised, Double-Blind, Placebo-Controlled, Multicentre Study. The Lancet Neurology, 16, 976-986. https://doi.org/10.1016/S1474-4422(17)30369-1 |
[13] | Monteleone, J.P.R., Gao, X., Kleijn, H.J., Bellanti, F. and Pelto, R. (2021) Eculizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Frontiers in Neurology, 12, Article 696385. https://doi.org/10.3389/fneur.2021.696385 |
[14] | Tang, G.-Q., Tang, Y., Dhamnaskar, K., Hoarty, M.D., Vyasamneni, R., Vadysirisack, D.D., et al. (2023) Zilucoplan, a Macrocyclic Peptide Inhibitor of Human Complement Component 5, Uses a Dual Mode of Action to Prevent Terminal Complement Pathway Activation. Frontiers in Immunology, 14, Article 1213920. https://doi.org/10.3389/fimmu.2023.1213920 |
[15] | Mastellos, D.C., Ricklin, D. and Lambris, J.D. (2019) Clinical Promise of Next-Generation Complement Therapeutics. Nature Reviews Drug Discovery, 18, 707-729. https://doi.org/10.1038/s41573-019-0031-6 |
[16] | Howard Jr., J.F., Nowak, R.J., Wolfe, G.I., Freimer, M.L., Vu, T.H., Hinton, J.L., et al. (2020) Clinical Effects of the Self-Administered Subcutaneous Complement Inhibitor Zilucoplan in Patients with Moderate to Severe Generalized Myasthenia Gravis. JAMA Neurology, 77, 582-592. https://doi.org/10.1001/jamaneurol.2019.5125 |
[17] | Shirley, M. (2024) Correction: Zilucoplan: First Approval. Drugs, 84, 373. https://doi.org/10.1007/s40265-024-02019-2 |
[18] | Howard Jr., J.F., Bresch, S., Genge, A., et al. (2023) Safety and Efficacy of Zilucoplan in Patients with Generalised Myasthenia Gravis (RAISE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Neurology, 22, 395-406. https://doi.org/10.1016/S1474-4422(23)00080-7 |
[19] | Vu, T., Ortiz, S., Katsuno, M., Annane, D., Mantegazza, R., Beasley, K.N., et al. (2023) Ravulizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Journal of Neurology, 270, 3129-3137. https://doi.org/10.1007/s00415-023-11617-1 |
[20] | Meisel, A., Annane, D., Vu, T., Mantegazza, R., Katsuno, M., Aguzzi, R., et al. (2023) Long-Term Efficacy and Safety of Ravulizumab in Adults with Anti-Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: Results from the Phase 3 CHAMPION MG Open-Label Extension. Journal of Neurology, 270, 3862-3875. https://doi.org/10.1007/s00415-023-11699-x |
[21] | Vu, T., Meisel, A., Mantegazza, R., Annane, D., Katsuno, M., Aguzzi, R., et al. (2022) Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. NEJM Evidence, 1, EVIDoa2100066. https://doi.org/10.1056/evidoa2100066 |
[22] | Roopenian, D.C. and Akilesh, S. (2007) FcRn: The Neonatal Fc Receptor Comes of Age. Nature Reviews Immunology, 7, 715-725. https://doi.org/10.1038/nri2155 |
[23] | Pyzik, M., Kozicky, L.K., Gandhi, A.K. and Blumberg, R.S. (2023) The Therapeutic Age of the Neonatal Fc Receptor. Nature Reviews Immunology, 23, 415-432. https://doi.org/10.1038/s41577-022-00821-1 |
[24] | Wolfe, G.I., Ward, E.S., de Haard, H., Ulrichts, P., Mozaffar, T., Pasnoor, M., et al. (2021) IgG Regulation through FcRn Blocking: A Novel Mechanism for the Treatment of Myasthenia Gravis. Journal of the Neurological Sciences, 430, Article 118074. https://doi.org/10.1016/j.jns.2021.118074 |
[25] | Ulrichts, P., Guglietta, A., Dreier, T., van Bragt, T., Hanssens, V., Hofman, E., et al. (2018) Neonatal Fc Receptor Antagonist Efgartigimod Safely and Sustainably Reduces IgGs in Humans. Journal of Clinical Investigation, 128, 4372-4386. https://doi.org/10.1172/jci97911 |
[26] | Howard Jr., J.F., Bril, V., Burns, T.M., Mantegazza, R., Bilinska, M., Szczudlik, A., et al. (2019) Randomized Phase 2 Study of FcRn Antagonist Efgartigimod in Generalized Myasthenia Gravis. Neurology, 92, e2661-e2673 https://doi.org/10.1212/wnl.0000000000007600 |
[27] | Kiessling, P., Lledo-Garcia, R., Watanabe, S., Langdon, G., Tran, D., Bari, M., et al. (2017) The FcRn Inhibitor Rozanolixizumab Reduces Human Serum IgG Concentration: A Randomized Phase 1 Study. Science Translational Medicine, 9, eaan1208. https://doi.org/10.1126/scitranslmed.aan1208 |
[28] | Bril, V., Dru?d?, A., Grosskreutz, J., et al. (2023) Safety and Efficacy of Rozanolixizumab in Patients with Generalised Myasthenia Gravis (MycarinG): A Randomised, Double-Blind, Placebo-Controlled, Adaptive Phase 3 Study. The Lancet Neurology, 22, 383-394. https://doi.org/10.1016/S1474-4422(23)00077-7 |
[29] | Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Tsavaris, N. and Papadaki, T. (2002) Anti-CD20-Based Therapy of B Cell Lymphoma: State of the Art. Leukemia, 16, 2004-2015. https://doi.org/10.1038/sj.leu.2402639 |
[30] | Schioppo, T. and Ingegnoli, F. (2017) Current Perspective on Rituximab in Rheumatic Diseases. Drug Design, Development and Therapy, 11, 2891-2904. https://doi.org/10.2147/dddt.s139248 |
[31] | Hehir, M.K., Hobson-Webb, L.D., Benatar, M., Barnett, C., Silvestri, N.J., Howard, J.F., et al. (2017) Rituximab as Treatment for Anti-Musk Myasthenia Gravis. Neurology, 89, 1069-1077. https://doi.org/10.1212/wnl.0000000000004341 |
[32] | Ramdas, S., Della Marina, A., Ryan, M.M., et al. (2022) Rituximab in Juvenile Myasthenia Gravis—An International Cohort Study and Literature Review. European Journal of Paediatric Neurology, 40, 5-10. https://doi.org/10.1016/j.ejpn.2022.06.009 |