|
免疫治疗在小细胞肺癌中的研究新进展
|
Abstract:
小细胞肺癌(SCLC)被认为是一种危及人类健康的严重疾病,它的发病率仅为13%~15%,而5年生存率更低,仅为7%。此外,SCLC的早期发展表明它的转移潜力很大,2/3的患者会发现癌细胞早早地蔓延至胸部。因此,我们必须采取措施来防止SCLC的发展,并确保人们的健康。因此,只有一小部分患者适合潜在的治愈性多模态治疗。因此患有这种疾病的患者迫切需要更有效的治疗方法,组学分析显示,SCLC具有广泛的染色体重排和非常高的突变负荷,这导致了免疫检查点抑制剂作为单一药物或与化疗联合使用的发展小细胞肺癌的治疗前景正在迅速发展。有研究表明了比较依托泊苷 卡铂/安慰剂与依托泊苷 卡铂/atezolizumab 依托泊苷 卡铂的一线随机试验(IMpower-133)的结果,显示接受atezolizumab的患者的无进展生存期和总生存期更长。本文对小细胞肺癌患者免疫治疗的研究进展进行综述。
Small cell lung cancer (SCLC) is considered as a serious disease endangering human health. Its incidence rate is only 13%~15%, while the 5-year survival rate is lower, only 7%. In addition, the early development of SCLC indicates its great potential for metastasis, with two-thirds of patients discovering early spread of cancer cells to the chest. Therefore, we must take measures to prevent the development of SCLC and ensure people’s health. Therefore, only a small portion of patients are suitable for potential curative multimodal therapy. Therefore, patients with this disease urgently need more effective treatment methods. Omics analysis shows that SCLC has a wide range of chromosomal rearrangements and a very high mutation load, which leads to the rapid development of immune checkpoint inhibitors as single drugs or in combination with chemotherapy for the treatment of small cell lung cancer. A study has shown that the results of a first-line randomized trial (IMpower-133) comparing etoposide carboplatin/placebo with etoposide carboplatin/atezolizumab etoposide carboplatin showed that patients receiving atezolizumab had longer progression free survival and overall survival. This article provides a review of the research progress in immunotherapy for small cell lung cancer patients.
[1] | Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. https://doi.org/10.3322/caac.21708 |
[2] | Rudin, C.M., Poirier, J.T., Byers, L.A., et al. (2019) Molecular Subtypes of Small Cell Lung Cancer: A Synthesis of Human and Mouse Model Data. Nature Reviews Cancer, 19, 289‐297. https://doi.org/10.1038/s41568-019-0133-9 |
[3] | Drapkin, B.J. and Rudin, C.M. (2021) Advances in Small‐Cell Lung Cancer (SCLC) Translational Research. Cold Spring Harbor Perspectives in Medicine, 11, a038240. https://doi.org/10.1101/cshperspect.a038240 |
[4] | Bernhardt, E.B. and Jalal, S.I. (2016) Small Cell Lung Cancer. Cancer Treatment and Research, 170, 301-322. https://doi.org/10.1007/978-3-319-40389-2_14 |
[5] | Waqar, S.N. and Morgensztern, D. (2017) Treatment Advances in Small Cell Lung Cancer (SCLC). Pharmacology & Therapeutics, 180, 16-23. https://doi.org/10.1016/j.pharmthera.2017.06.002 |
[6] | Stinchcombe, T.E. (2017) Current Treatments for Surgically Resectable, Limited-Stage, and Extensive-Stage Small Cell Lung Cancer. Oncologist, 22, 1510-1517. https://doi.org/10.1634/theoncologist.2017-0204 |
[7] | Lara, P.N., Natale, R., Crowley, J., Lenz, H.J., Redman, M.W., Carleton, J.E., et al. (2009) Phase III Trial of Irinotecan/Cisplatin Compared with Etoposide/Cisplatin in Extensive-Stage Small-Cell Lung Cancer: Clinical and Pharmacogenomic Results from SWOG S0124. Journal of Clinical Oncology, 27, 2530-2535. https://doi.org/10.1200/JCO.2008.20.1061 |
[8] | Rossi, A., Di Maio, M., Chiodini, P., Rudd, R.M., Okamoto, H., Skarlos, D.V., et al. (2012) Carboplatin-or Cisplatin-Based Chemotherapy in First-Line Treatment of Small-Cell Lung Cancer: The COCIS Meta-Analysis of Individual Patient Data. Journal of Clinical Oncology, 30, 1692-1698. https://doi.org/10.1200/JCO.2011.40.4905 |
[9] | Ito, T., Kudoh, S., Ichimura, T., Fujino, K., Hassan, W.A. and Udaka, N. (2017) Small Cell Lung Cancer, an Epithelial to Mesenchymal Transition (EMT)-Like Cancer: Significance of Inactive Notch Signaling and Expression of Achaete-Scute Complex Homologue 1. Human Cell, 30, 1-10. https://doi.org/10.1007/s13577-016-0149-3 |
[10] | Gazdar Adi, F., Bunn Paul, A. and Minna John, D. (2017) Small-Cell Lung Cancer: What We Know, What We Need to Know and the Path Forward. Nature Reviews Cancer, 17, Article No. 765. https://doi.org/10.1038/nrc.2017.106 |
[11] | Horn, L., Mansfield, A.S., Szcz?sna, A., et al. (2018) First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. The New England Journal of Medicine, 379, 2220-2229. https://doi.org/10.1056/NEJMoa1809064 |
[12] | George, J., Lim, J.S., Jang, S.J., et al. (2015) Comprehensive Genomic Profiles of Small Cell Lung Cancer. Nature, 524, 47‐53. https://doi.org/10.1038/nature14664 |
[13] | Harbour, J.W., Lai, S.L., Whang‐Peng, J., Gazdar, A.F., Minna, J.D. and Kaye, F.J. (1988) Abnormalities in Structure and Expression of the Human Retino-Blastoma Gene in SCLC. Science, 241, 353‐357. https://doi.org/10.1126/science.2838909 |
[14] | Takahashi, T., Nau, M.M., Chiba, I., et al. (1989) P53: A Frequent Target Forgenetic Abnormalities in Lung Cancer. Science, 246, 491‐494. https://doi.org/10.1126/science.2554494 |
[15] | Sutherland, K.D., Proost, N., Brouns, I., Adriaensen, D., Song, J.Y. and Berns, A. (2011) Cell of Origin of Small Cell Lung Cancer: Inactivation of Trp53 AndRb1 in Distinct Cell Types of Adult Mouse Lung. Cancer Cell, 19, 754‐764. https://doi.org/10.1016/j.ccr.2011.04.019 |
[16] | Huang, Y.H., Klingbeil, O., He, X.Y., et al. (2018) POU2F3 Is a Master Regulator of a Tuft Cell‐Like Variant of Small Cell Lung Cancer. Genes & Development, 32, 915‐928. https://doi.org/10.1101/gad.314815.118 |
[17] | Chen, H.J., Poran, A., Unni, A.M., et al. (2019) Generation of Pulmonary Neuro-Endocrine Cells and SCLC‐Like Tumors from Human Embryonic Stem Cells. Journal of Experimental Medicine, 216, 674‐687. https://doi.org/10.1084/jem.20181155 |
[18] | Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264. https://doi.org/10.1038/nrc3239 |
[19] | De Sousa Linhares, A., Battin, C., Jutz, S., et al. (2019) Therapeutic PD-L1 Antibodies Are More Effective than PD-1 Antibodies in Blocking PD-1/PD-L1 Signaling. Scientific Reports, 9, Article No. 11472. https://doi.org/10.1038/s41598-019-47910-1 |
[20] | Kwok, G., Yau, T.C., Chiu, J.W., Tse, E. and Kwong, Y.L. (2016) Pembrolizumab (Keytruda). Human Vaccines & Immunotherapeutics, 12, 2777-2789. https://doi.org/10.1080/21645515.2016.1199310 |
[21] | Chung, H.C., Lopez-Martin, J.A., Kao, S.C.H., Miller, W.H., Ros, W. and Gao, B. (2018) Phase 2 Study of Pembrolizumab in Advanced Small-Cell Lung Cancer (SCLC): KEYNOTE-158. Journal of Clinical Oncology, 15, 8506. https://doi.org/10.1200/JCO.2018.36.15_suppl.8506 |
[22] | Chung, H.C., Piha-Paul, S.A., Lopez-Martin, J., Schellens, J.H.M., Kao, S., Miller Jr., W.H., et al. (2019) Pembrolizumab after Two or More Lines of Priortherapy in Patients with Advanced Small-Cell Lung Cancer (SCLC): Results from the KEYNOTE-028 and KEYNOTE-158 Studies. Cancer Research, 79, CT073. https://doi.org/10.1158/1538-7445.AM2019-CT073 |
[23] | Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D.R., Steins, M., Ready, N.E., et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 1627-1639. https://doi.org/10.1056/NEJMoa1507643 |
[24] | Brahmer, J., Reckamp, K.L., Baas, P., Crino, L., Eberhardt, W.E., Poddubskaya, E., et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 123-135. https://doi.org/10.1056/NEJMoa1504627 |
[25] | Yang, S., Zhang, Z. and Wang, Q. (2019) Emerging Therapies for Small Cell Lung Cancer. Journal of Hematology & Oncology, 12, Article No. 47. https://doi.org/10.1186/s13045-019-0736-3 |
[26] | Cho, D.C., Mahipal, A., Dowlati, A., Chow, W.A., Segal, N.H., Chung, K.Y., et al. (2018) Safety and Clinical Activity of Durvalumab in Combination with Tremelimumab in Extensive Disease Small-Cell Lung Cancer (ED-SCLC). Journal of Clinical Oncology, 36, 8517. https://doi.org/10.1200/JCO.2018.36.15_suppl.8517 |
[27] | Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., et al. (1994) Ctla-4 Can Function as a Negative Regulator of T-Cell Activation. Immunity, 1, 405-413. https://doi.org/10.1016/1074-7613(94)90071-X |
[28] | Page, D.B., Yuan, J. and Wolchok, J.D. (2010) Targeting Cytotoxic T-Lymphocyte Antigen 4 in Immunotherapies for Melanoma and Other Cancers. Immunotherapy, 2, 367-379. https://doi.org/10.2217/imt.10.21 |
[29] | Small, E.J., Tchekmedyian, N.S., Rini, B.I., Fong, L., Lowy, I. and Allison, J.P. (2007) A Pilot Trial of CTLA-4 Blockade with Human Anti-CTLA-4 in Patients with Hormone-Refractory Prostate Cancer. Clinical Cancer Research, 13, 1810-1815. https://doi.org/10.1158/1078-0432.CCR-06-2318 |
[30] | Hodi, F.S., Butler, M., Oble, D.A., Seiden, M.V., Haluska, F.G., Kruse, A., et al. (2008) Immunologic and Clinical Effects of Antibody Blockade of Cytotoxic Tlymphocyte-Associated Antigen 4 in Previously Vaccinated Cancer Patients. Proceedings of the National Academy of Sciences of the United States of America, 105, 3005-3010. https://doi.org/10.1073/pnas.0712237105 |
[31] | Ott, P.A., Elez, E., Hiret, S., Kim, D.W., Morosky, A., Saraf, S., et al. (2017) Pembrolizumab in Patients with Extensive-Stage Small-Cell Lung Cancer: Results from the Phase Ib KEYNOTE-028 Study. Journal of Clinical Oncology, 35, 3823-3829. https://doi.org/10.1200/JCO.2017.72.5069 |
[32] | Simpson-Abelson, M.R., D’Arigo, K., Hilton, F., et al. (2020) 1053P Iovance Generation-2 Tumour-Infiltrating Lymphocyte (TIL) Product Is Reinvigorated during the Manufacturing Process. Annals of Oncology, 31, S720. https://doi.org/10.1016/j.annonc.2020.08.1173 |
[33] | Owens, G.L., Price, M.J., Cheadle, E.J., et al. (2018) Ex Vivo Expanded Tumour-Infiltrating Lymphocytes from Ovarian Cancer Patients Release Anti-Tumour Cytokines in Response to Autologous Primary Ovarian Cancer Cells. Cancer Immunology, Immunotherapy, 67, 1519-1531. https://doi.org/10.1007/s00262-018-2211-3 |
[34] | Wang, S., Sun, J., Chen, K., et al. (2021) Perspectives of Tumor-Infiltrating Lymphocyte Treatment in Solid Tumors. BMC Medicine, 19, Article No. 140. https://doi.org/10.1186/s12916-021-02006-4 |
[35] | Rosenberg, S.A., Packard, B.S., Aebersold, P.M., et al. (1988) Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma. The New England Journal of Medicine, 319, 1676-1680. https://doi.org/10.1056/NEJM198812223192527 |
[36] | Topalian, S.L., Solomon, D., Avis, F.P., et al. (1988) Immunotherapy of Patients with Advanced Cancer Using Tumor-Infiltrating Lymphocytes and Recombinant Interleukin-2: A Pilot Study. Journal of Clinical Oncology, 6, 839-853. https://doi.org/10.1200/JCO.1988.6.5.839 |
[37] | Dudley, M.E., Wunderlich, J.R., Yang, J.C., et al. (2005) Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients with Refractory Metastatic Melanoma. Journal of Clinical Oncology, 23, 2346-2357. https://doi.org/10.1200/JCO.2005.00.240 |
[38] | Rosenberg, S.A., Yannelli, J.R., Yang, J.C., et al. (1994) Treatment of Patients with Metastatic Melanoma with Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2. JNCI: Journal of the National Cancer Institute, 86, 1159-1166. https://doi.org/10.1093/jnci/86.15.1159 |
[39] | Rohaan, M.W., Borch, T.H., Van Den Berg, J.H., et al. (2022) Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 387, 2113-2125. https://doi.org/10.1056/NEJMoa2210233 |
[40] | Schoenfeld, A., Lee, S., Paz-Ares, L., et al. (2021) 458 First Phase 2 Results of Autologous Tumor-Infiltrating Lymphocyte (TIL; LN-145) Monotherapyin Patients with Advanced, Immune Checkpoint Inhibitor-Treated, Non-Small Cell Lung Cancer (NSCLC). Journal for ImmunoTherapy of Cancer, 9, A486-A487. https://doi.org/10.1136/jitc-2021-SITC2021.458 |
[41] | Creelan, B.C., Wang, C., Teer, J.K., et al. (2021) Tumor-Infiltrating Lymphocyte Treatment for Anti-PD-1-Resistant Metastatic Lung Cancer: A Phase 1 Trial. Nature Medicine, 27, 1410-1418. https://doi.org/10.1038/s41591-021-01462-y |
[42] | Jazaeri, A.A., Zsiros, E., Amaria, R.N., et al. (2019) Safety and Efficacy of Adoptive Cell Transfer Using Autologous Tumor Infiltrating Lymphocytes (LN-145) for Treatment of Recurrent, Metastatic, or Persistent Cervical Carcinoma. Journal of Clinical Oncology, 37, 2538. https://doi.org/10.1200/JCO.2019.37.15_suppl.2538 |
[43] | O’Malley, D., Lee, S.M., Psyrri, A., et al. (2021) Phase 2 Efficacy and Safety of Autologous Tumor-Infiltrating Lymphocyte (TIL) Cell Therapy in Combination with Pembrolizumab in Immune Checkpoint Inhibitor-Na?ve Patients with Advanced Cancers. Journal for ImmunoTherapy of Cancer, 9, A523-A524. |
[44] | Jimeno, A., Papa, S., Haigentz, M., et al. (2020) 353 Safety and Efficacy of Tumor Infiltrating Lymphocytes (TIL, LN-145) in Combination with Pembrolizumab for Advanced, Recurrent or Metastatic HNSCC. Journal for ImmunoTherapy of Cancer, 8, A215-A216. https://doi.org/10.1136/jitc-2020-SITC2020.0353 |
[45] | Zacharakis, N., Chinnasamy, H., Black, M., et al. (2018) Immune Recognition of Somatic Mutations Leading to Complete Durable Regression in Metastatic Breast Cancer. Nature Medicine, 24, 724-730. https://doi.org/10.1038/s41591-018-0040-8 |